S61956- Accelerating HPC and AI Applications with Offloading to NVIDIA BlueField DPUs: Strategies and Benefits

NVIDIA GTC (March ‘24)

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda

Follow us on
https://twitter.com/mvapich
Drivers of Modern HPC Cluster Architectures

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand, RoCE, Slingshot)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (GPUs from NVIDIA, AMD, and Intel)
- Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.
Broad Challenge:

How to design high-performance and scalable middleware for HPC and AI systems while taking advantage of heterogeneous (CPU + GPU + DPU/IPU (xPU)) HPC and Cloud resources?
Presentation Outline

- **Overview of the MVAPICH Project**
- **Offloading Strategies and Benefits:**
 - Non-blocking Collectives (communication)
 - Ialltoall and P3DFFT
 - Ibcast and HPL
 - Non-blocking Point-to-point (communication)
 - Applications using 3D Stencils
 - Non-blocking Point-to-point and collective (communication and computation)
 - PETSc
 - Offloading DL training (computation)
- **Conclusions**
Overview of the MVAPICH Project

- High Performance open-source MPI Library
- Support for multiple interconnects
 - InfiniBand, Omni-Path, Ethernet/iWARP, RDMA over Converged Ethernet (RoCE), AWS EFA, OPX, Broadcom RoCE, Intel Ethernet, Rockport Networks, Slingshot 10/11
- Support for multiple platforms
 - x86, OpenPOWER, ARM, Xeon-Phi, GPGPUs (NVIDIA and AMD)
- Started in 2001, first open-source version demonstrated at SC ‘02
- Supports the latest MPI-3.1 standard
- http://mvapich.cse.ohio-state.edu
- Additional optimized versions for different systems/environments:
 - MVAPICH2-X (Advanced MPI + PGAS), since 2011
 - MVAPICH2-GDR with support for NVIDIA (since 2014) and AMD (since 2020) GPUs
 - MVAPICH2-MIC with support for Intel Xeon-Phi, since 2014
 - MVAPICH2-Virt with virtualization support, since 2015
 - MVAPICH2-EA with support for Energy-Awareness, since 2015
 - MVAPICH2-Azure for Azure HPC 1B instances, since 2019
 - MVAPICH2-X-AWS for AWS HPC+EFA instances, since 2019
- Tools:
 - OSU MPI Micro-Benchmarks (OMB), since 2003
 - OSU InfiniBand Network Analysis and Monitoring (INAM), since 2015

- Used by more than 3,375 organizations in 91 countries
- More than 1.76 Million downloads from the OSU site directly
- Empowering many TOP500 clusters (Nov ‘23 ranking)
 - 11th, 10,649,600-core (Sunway TaihuLight) at NSC, Wuxi, China
 - 29th, 448,448 cores (Frontera) at TACC
 - 46th, 288,288 cores (Lassen) at LLNL
 - 61st, 570,020 cores (Nurion) in South Korea and many others
- Available with software stacks of many vendors and Linux Distros (RedHat, SuSE, OpenHPC, and Spack)
- Partner in the 29th ranked TACC Frontera system
- Empowering Top500 systems for more than 18 years
Architecture of MVAPICH2 Software Family for HPC, DL/ML, and Data Science

High Performance Parallel Programming Models

- Message Passing Interface (MPI)
- PGAS (UPC, OpenSHMEM, CAF, UPC++)
- Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)

High Performance and Scalable Communication Runtime

Diverse APIs and Mechanisms

- Point-to-point Primitives
- Collectives Algorithms
- Job Startup
- Energy-Awareness
- Remote Memory Access
- I/O and File Systems
- Fault Tolerance
- Virtualization
- Active Messages
- Introspection & Analysis

Support for Modern Networking Technology
(InfiniBand, iWARP, RoCE, Omni-Path, EFA, Rockport, Slingshot)

- Transport Protocols: RC, SRD, UD, DC
- Modern Features: UMR, ODP, SR-IOV, Multi Rail

Support for Modern Multi-/Many-core Architectures
(Intel-Xeon, AMD, OpenPOWER, ARM, GPU (NVIDIA, AMD), DPU)

- Transport Mechanisms: Shared Memory, CMA, IVSHMEM, XPMEM
- Modern Features: Optane*, NVLink, CAPI*

* Upcoming
Presentation Outline

- Overview of the MVAPICH Project
- **Offloading Strategies and Benefits:**
 - Non-blocking Collectives (communication)
 - ialltoall and P3DFFT
 - Ibcast and HPL
 - Non-blocking Point-to-point (communication)
 - Applications using 3D Stencils
 - Non-blocking Point-to-point and collective (communication and computation)
 - PETSc
 - Offloading DL training (computation)
- Conclusions
Accelerating Applications with BlueField-3 DPU

- InfiniBand network adapter with up to 400Gbps speed
- System-on-chip containing 16 64-bit ARMv8.2 A78 cores with 2.75 GHz each
- 16 GB of memory for the ARM cores
Problems with Blocking Collective Operations

- Communication time cannot be used for compute
 - No overlap of computation and communication
 - Inefficient
• Application processes schedule collective operation
• Check periodically if operation is complete
• **Overlap of computation and communication => Better Performance**
• **Catch: Who will progress communication**
Major Opportunity and Benefits

- Overlap of Computation with Communication
- Reducing the overall application execution time
Four Major Challenges

- Host-DPU-Network communication mechanisms
- Non-blocking Collective Algorithm offload
- Load balancing across ARM cores to take care of the offloading tasks
- Re-designing applications using non-blocking collectives
Staging vs. GVMI (Guest Virtual Machine ID)

Staged Transfer

1. Host Memory → DPU Memory
2. DPU Memory → Host Memory

GVMI Transfer

1. Host Memory → DPU Memory
2. DPU Memory → Host Memory

RDMA Read
RDMA Write
TX/RX Unit
MVAPICH2-DPU Library Release

- Supports all features available with the MVAPICH2 release (http://mvapich.cse.ohio-state.edu)
- Novel framework to offload non-blocking collectives to DPU
- Offloads non-blocking Alltoall (MPI_Ialltoall) to DPU
- Offloads non-blocking Broadcast (MPI_Ibcast) to DPU

Available from X-ScaleSolutions, please send a note to contactus@x-scalesolutions.com to get a trial license.
Overlap of Communication and Computation with osu_ialltoall (BF-2, 32 nodes)

Delivers Peak Overlap
Total Execution Time with osu_ialltoall (BF-2, 32 nodes)

Benefits in Total execution time (Compute + Communication)

32 Nodes, 16 PPN

32 Nodes, 32 PPN

Network Based Computing Laboratory

GTC (Mar ‘24)
P3DFFT Application Execution Time (BF-2, 32 nodes)

Benefits in application-level execution time

32 Nodes, 16 PPN

32 Nodes, 32 PPN
P3DFFT Application Execution Time (BF-3, 16 nodes)

Benefits in application-level execution time

16 Nodes, 32 PPN
Total Execution Time with osu_ibcast (BF-2, 32 nodes)

Benefits in Total execution time (Compute + Communication)

Network Based Computing Laboratory
GTC (Mar ‘24)
Accelerating HPL with MVAPICH2-DPU and XScaleHPL-DPU (BF-2)

Benefits in application-level execution time

16x32 process grid

31x32 process grid
Presentation Outline

• Overview of the MVAPICH Project

• Offloading Strategies and Benefits:
 – Non-blocking Collectives (communication)
 • Ialltoall and P3DFFT
 • Ibcast and HPL
 – Non-blocking Point-to-point (communication)
 • Applications using 3D Stencils
 – Non-blocking Point-to-point and collective (communication and computation)
 • PETSc
 – Offloading DL training (computation)

• Conclusions
Offloading MPI Point-to-Point with 3D Stencil (BF-3)

- Use GVMI to Offload MPI_Isend/MPI_Irecv to the DPU
- 3D Stencil Overlap Benchmark:
 - Perform data exchange with 6 peers. (Similar to 7-point stencil)
 - Overlap computation with data-exchange
 - Up to 18% benefits

Data Exchange Size

16 Nodes, 32 PPN
Offloading MPI Point-to-Point and Reduction with PETSc

- PETSc, the Portable, Extensible Toolkit for Scientific Computation
 - Includes a large suite of scalable parallel linear and nonlinear equation solvers, ODE integrators, and optimization algorithms for application codes written in C, C++, Fortran, and Python.
 - Includes support for managing parallel PDE discretization including parallel matrix and vector assembly routines
 - https://petsc.org/release/overview/
- Used in many different toolkits and libraries
 - Adflow, DAFoam, FreeFEM, MFEM, MOOSE, OpenFoam, etc.
Offloading MPI Point-to-Point and Reduction with PETSc (BF-3)

- **PETSc:**
 - Solves 3D Laplacian with 27-point finite difference stencil
 - Modified Solver Algorithm to efficiently offload reduction (compute + communication) operations to the DPU
- **Problem Size:** 256x256x256
 - Strong Scaling Run
 - % Host-to-DPU data exchange cost increases for large node count
- **Up to 24% benefits**

Benefits in Total execution time (Compute + Communication)
Presentation Outline

• Overview of the MVAPICH Project

• **Offloading Strategies and Benefits:**
 – Non-blocking Collectives (communication)
 • Ialltoall and P3DFFT
 • Ibcast and HPL
 – Non-blocking Point-to-point (communication)
 • Applications using 3D Stencils
 – Non-blocking Point-to-point and collective (communication and computation)
 • PETSc
 – Offloading DL training (computation)

• Conclusions
Exploiting DPUs for Deep Neural Network Training

- There are several phases in Deep Neural Network Training
 - Fetching Training Data
 - Data Augmentation
 - Forward Pass
 - Backward Pass
 - Weight Update
 - Model Validation
- Different phases can be offloaded to DPUs to accelerate the training.
DPU Offloading Strategy

- Offloads data augmentation and model validation to DPUs.
- Creates three types of processes
 - Training processes (on CPU)
 - Data Augmentation processes (On DPU)
 - Testing processes (On DPU)

X-ScaleAI-DPU Package

- Accelerating CPU-based DNN training with DPU support
- Based on MVAPICH2 2.3.7 with Horovod 0.25.0
- Supports all features available with the MVAPICH2 2.3.7 release (http://mvapich.cse.ohio-state.edu)
- Supports PyTorch framework for Deep Learning

Available from X-ScaleSolutions, please send a note to contactus@x-scalesolutions.com to get a trial license.
Training of ResNet-20v1 model on the CIFAR10 dataset (BF-3)

System Configuration

- Two Intel(R) Xeon(R) 16-core CPUs (32 total) E5-2697A V4 @ 2.60 GHz
- NVIDIA BlueField-3 SoC, HDR100 100Gb/s InfiniBand adapters
- Memory: 256GB DDR4 2400MHz RDIMMs per node
- 1TB 7.2K RPM SSD 2.5" hard drive per node
- NVIDIA ConnectX-6 HDR/HDR100 200/100Gb/s InfiniBand adapters with Socket Direct

Up to 19% Performance improvement using X-ScaleAI-DPU over CPU-only training on the ResNet-20v1 model on the CIFAR10 dataset
Presentation Outline

- Overview of the MVAPICH Project
- Offloading Strategies and Benefits:
 - Non-blocking Collectives (communication)
 - Ialltoall and P3DFFT
 - Ibcast and HPL
 - Non-blocking Point-to-point (communication)
 - Applications using 3D Stencils
 - Non-blocking Point-to-point and collective (communication and computation)
 - PETSc
 - Offloading DL training (computation)
- Conclusions
Conclusions

• DPU technology provides novel ways to offload computation and communication from host CPUs to DPU cores
• Demonstrated two ways to take advantage of the DPU technology to accelerate MPI and Deep Learning applications
• The proposed new GVMI interface allows to further optimize the overhead associated with offloading communication
• Promises potential for accelerating application performance further
Thank You!

panda@cse.ohio-state.edu