
Performance	Engineering	using	MVAPICH	and	TAU	

Sameer	Shende	
University	of	Oregon	

	
SC18	Talk	

The	Ohio	State	University	Booth	(#4404)	
Wednesday,	November	14,	2018,	2pm	–	2:30pm	

http://tau.uoregon.edu/tau_osu_sc18.pdf	

	
	
	

	
	

	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
•  Use	Cases	
•  TAU	Performance	System®		

2	

Acknowledgments

•  The MVAPICH2 team The Ohio State University
•  http://mvapich.cse.ohio-state.edu

•  TAU team at the University of Oregon
•  http://tau.uoregon.edu

3	

TAU Performance System®

•  Tuning and Analysis Utilities (22+ year project)
•  Comprehensive performance profiling and tracing

•  Integrated, scalable, flexible, portable
•  Targets all parallel programming/execution paradigms

•  Integrated performance toolkit
•  Instrumentation, measurement, analysis, visualization
•  Widely-ported performance profiling / tracing system
•  Performance data management and data mining
•  Open source (BSD-style license)
•  Uses performance and control variables to interface with MVAPICH2

•  Integrates with application frameworks
•  http://tau.uoregon.edu

4	

Understanding Application Performance using TAU

•  How much time is spent in each application routine and outer loops? Within loops, what is
the contribution of each statement?

•  How many instructions are executed in these code regions?
Floating point, Level 1 and 2 data cache misses, hits, branches taken?

•  What is the memory usage of the code? When and where is memory allocated/de-
allocated? Are there any memory leaks?

•  What are the I/O characteristics of the code? What is the peak read and write bandwidth of
individual calls, total volume?

•  What is the contribution of each phase of the program? What is the time wasted/spent
waiting for collectives, and I/O operations in Initialization, Computation, I/O phases?

•  How does the application scale? What is the efficiency, runtime breakdown of performance
across different core counts?

•  How can I tune MPI for better performance? What performance and control does
MVAPICH2 export to observe and control its performance?

5	

Overview	of	the	MVAPICH2	Project	
High	Performance	open-source	MPI	Library	for	InfiniBand,	Omni-Path,	Ethernet/iWARP,	and	RDMA	over	Converged	Ethernet	(RoCE)	

•  MVAPICH	(MPI-1),	MVAPICH2	(MPI-2.2	and	MPI-3.1),	Started	in	2001,	First	version	available	in	2002	

•  MVAPICH2-X	(MPI	+	PGAS),	Available	since	2011	

•  Support	for	GPGPUs		(MVAPICH2-GDR)	and	MIC	(MVAPICH2-MIC),	Available	since	2014	

•  Support	for	Virtualization	(MVAPICH2-Virt),	Available	since	2015	

•  Support	for	Energy-Awareness	(MVAPICH2-EA),	Available	since	2015	

•  Support	for	InfiniBand	Network	Analysis	and	Monitoring	(OSU	INAM)	since	2015	

•  Used	by	more	than	2,925	organizations	in	86	countries	

•  More	than	481,000	(>	0.48	million)	downloads	from	the	OSU	site	directly	

•  Empowering	many	TOP500	clusters	(Jun	‘18	ranking)	
•  2nd,	10,649,600-core	(Sunway	TaihuLight)	at	National	Supercomputing	Center	in	Wuxi,	China	

•  12th,	556,104	cores	(Oakforest-PACS)	in	Japan	

•  15th,	367,024	cores	(Stampede2)	at	TACC	

•  24th,	241,108-core	(Pleiades)	at	NASA	

•  62nd,	76,032-core	(Tsubame	2.5)	at	Tokyo	Institute	of	Technology	

•  Available	with	software	stacks	of	many	vendors	and	Linux	Distros	(RedHat	and	SuSE)	

•  http://mvapich.cse.ohio-state.edu	

Empowering	Top500	systems	for	over	a	decade	
6	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
•  Use	Cases	
•  TAU	Performance	System®		
	

7	

MVAPICH2 and TAU

●  TAU	and	MVAPICH2	are	enhanced	with	the	ability	to	generate	recommendations	and	
engineering	performance	report	

●  MPI	libraries	like	MVAPICH2	are	now	“reconfigurable”	at	runtime	
●  TAU	and	MVAPICH2	communicate	using	the	MPI-T	interface	

8	

Why	PMPI	is	not	good	enough?	

•  Takes	a	“black	box”	view	of	the	MPI	library	
9	

MPI_T	usage	semantics	

Initialize MPI-T

Get #variables

Query Metadata

Allocate Session

Allocate Handle

Read/Write/Reset
Start/Stop var

Free Handle

Finalize MPI-T

Free Session

Allocate Handle

Read/Write var

Free Handle

Performance
Variables

Control
Variables

int	MPI_T_init_thread(int	required,	int	*provided);	int	MPI_T_cvar_get_num(int	*num_cvar);	
int	MPI_T_cvar_get_info(int	cvar_index,	char	*name,	int	*name_len,	int	*verbosity,	

	 	 	MPI_Datatype	*datatype,	MPI_T_enum	*enumtype,	
	 	 	char	*desc,	int	*desc_len,	int	*bind,	int	*scope);	
int	MPI_T_pvar_session_create(MPI_T_pvar_session	*session);	int	MPI_T_pvar_handle_alloc(MPI_T_pvar_session	session,	int	pvar_index,	
	 	void	*obj_handle,	MPI_T_pvar_handle	*handle,	int	*count);	

int	MPI_T_pvar_start(MPI_T_pvar_session	session,	MPI_T_pvar_handle	handle);	
int	MPI_T_pvar_read(MPI_T_pvar_session	session,	MPI_T_pvar_handle	handle,	void*	buf);	
int	MPI_T_pvar_reset(MPI_T_pvar_session	session,	MPI_T_pvar_handle	handle);	

int	MPI_T_pvar_handle_free(MPI_T_pvar_session	session,	MPI_T_pvar_handle	*handle);	int	MPI_T_pvar_session_free(MPI_T_pvar_session	*session);	int	MPI_T_finalize(void);	

10	

MPI_T	support	with	MVAPICH2	

Memory	Usage:	
- 	current	level	

- 	maximum	watermark	

Registration	cache:	
- 	hits	

- 	misses	

Pt-to-pt	messages:	
- 	unexpected	queue	length	
- 	unexp.	match	attempts	

- 	recvq.	length	

Shared-memory:	
- 	limic/	CMA	

- 	buffer	pool	size	&	usage	

Collective	ops:	
- 	comm.	creation	

- 	#algorithm	invocations	
[Bcast	–	8;	Gather	–	10]	

…	

InfiniBand	N/W:	
- 	#control	packets	

- 	#out-of-order	packets	

•  Support	performance	variables	(PVAR)	

•  Variables	to	track	different	components	within	the	MPI	library	

•  Initial	support	for	Control	Variables		(CVAR)	
•  Variables	to	modify	the	behavior	of	MPI	Library	

11	

MPI_T_init_thread(..)	
MPI_T_cvar_get_info(MV2_EAGER_THRESHOLD)	
if	(msg_size	<	MV2_EAGER_THRESHOLD	+	1KB)	

	MPI_T_cvar_write(MV2_EAGER_THRESHOLD,	+1024)	
MPI_Send(..)	
MPI_T_finalize(..)	
	

Co-designing	Applications	to	use	MPI-T	

Example	Pseudo-code:	Optimizing	the	eager	limit	dynamically:	

12	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
•  Use	Cases	
•  TAU	Performance	System®		
	

13	

Interacting TAU with MVAPICH2 through MPI_T Interface

●  Enhance	existing	support	for	MPI_T	in	
MVAPICH2	to	expose	a	richer	set	of	
performance	and	control	variables	

●  Get	and	display	MPI	Performance	
Variables	(PVARs)	made	available	by	
the	runtime	in	TAU	

●  Control	the	runtime’s	behavior	via	MPI	
Control	Variables	(CVARs)	

●  Add	support	to	MVAPICH2	and	TAU	for	
interactive	performance	engineering	
sessions	

14	

Plugin-based Infrastructure for Non-Interactive Tuning

●  Performance	data	collected	by	TAU	
●  Support	for	PVARs	and	CVARs	
●  Setting	CVARs	to	control	MVAPICH2	
●  Studying	performance	data	in	TAU’s	

ParaProf	profile	browser	
●  Multiple	plugins	available	for	

●  Tuning	application	at	runtime	and	
●  Generate	post-run	recommendations	

15	

Enhancing MPI_T Support
●  Introduced	support	for	new	MPI_T	based	CVARs	to	MVAPICH2	

○  MPIR_CVAR_MAX_INLINE_MSG_SZ	
■  Controls	the	message	size	up	to	which	“inline”	transmission	of	data	is	

supported	by	MVAPICH2	
○  MPIR_CVAR_VBUF_POOL_SIZE		

■  Controls	the	number	of	internal	communication	buffers	(VBUFs)	
MVAPICH2	allocates	initially.	Also,	
MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1]	([2…n])	

○  MPIR_CVAR_VBUF_SECONDARY_POOL_SIZE		
■  Controls	the	number	of	VBUFs	MVAPICH2	allocates	when	there	are	no	

more	free	VBUFs	available	
○  MPIR_CVAR_IBA_EAGER_THRESHOLD	

■  Controls	the	message	size	where	MVAPICH2	switches	from	eager	to	
rendezvous	protocol	for	large	messages	

●  TAU	enhanced	with	support	for	setting	MPI_T	CVARs	in	a	non-interactive	
mode	for	uninstrumented	applications	

16	

MVAPICH2

●  Several	new	MPI_T	based	PVARs	added	to	MVAPICH2	
○  mv2_vbuf_max_use,	mv2_total_vbuf_memory	etc	

●  Enhanced	TAU	with	support	for		tracking	of	MPI_T	PVARs	and	CVARs	for	
uninstrumented	applications	
○  ParaProf,	TAU’s	visualization	front	end,		enhanced	with	support	for	

displaying	PVARs	and	CVARs	
○  TAU	provides	tau_exec,	a	tool	to	transparently	instrument	MPI	routines	

○  Uninstrumented:		
%	mpirun	–np	1024	./a.out	

○  Instrumented:		
%	mpirun	–np	1024	tau_exec	[options]	./a.out		
%	paraprof		

17	

PVARs Exposed by MVAPICH2

18	

CVARs Exposed by MVAPICH2

19	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
•  Use	Cases	

•  Designing	Dynamic	and	Adaptive	MPI	Point-to-point	Protocols	
•  TAU	Performance	System®		

20	

•  Eager	Protocol	
•  Best	communication	performance	for	smaller	messages 		

•  Rendezvous	Protocol	
•  Best	communication	performance	for	larger	messages	

Point-to-point	Communication	Protocols	in	MPI	

21	

Application	

MPI	Library	

High-Performance	Networks	

•  Eager	Protocol	
•  Best	communication	performance	for	smaller	messages	

Analyzing	Communication	Costs	of	Point-to-point	Protocols	

Application	
Data	

Pre-registered	Communication	Buffers	 Pre-registered	Communication	Buffers	

Buffer	#1	 Buffer	#1	Buffer	#n	 Buffer	#n	

Application	
Data	

Cost:	
Memcpy	

Cost:	
Memcpy	

Cost:	
Network	Transfer	

22	

•  Rendezvous	Protocol	
•  Best	communication	performance	for	larger	messages	

Analyzing	Communication	Costs	of	Point-to-point	Protocols	(Cont.)	

Cost:	
Half	RTT	

Cost:	
Half	RTT	

Cost:	
Network	Transfer	

Cost:	
Half	RTT	

23	

Studying	the	Performance	and	Overlap	of	3D	Stencil	Benchmark	

•  Default:	Uses	eager	protocol	for	small	messages	and	rendezvous	for	large	
•  Manually	Tuned:	Forces	the	use	of	eager	for	all	message	sizes	
•  Manually	Tuned	has	degradation	in	raw	communication	performance	
•  Manually	Tuned	has	significant	benefits	for	overlap	
•  Manually	Tuned	better	for	overall	application	execution	time	

0	
5	
10	
15	
20	
25	
30	
35	

1	 4	 16
	

64
	

25
6	 1K
	

4K
	

16
K	

64
K	

25
6K

	

La
te
nc
y	
(m

s)
	

Message	Size	(Bytes)	

Communication	Time	

Default	 Manually	Tuned	

0	

20	

40	

60	

80	

100	

1	 4	 16
	

64
	

25
6	 1K
	

4K
	

16
K	

64
K	

25
6K

	

O
ve
rla

p	
(%

)	

Message	Size	(Bytes)	

Overlap	Potential	

Default	 Manually	Tuned	

0	
10	
20	
30	
40	
50	
60	

1	 4	 16
	

64
	

25
6	 1K
	

4K
	

16
K	

64
K	

25
6K

	

La
te
nc
y	
(m

s)
	

Message	Size	(Bytes)	

Overall	Performance	

Default	 Manually	Tuned	

24	

•  Application	processes	schedule	communication	operation	
•  Network	adapter	progresses	communication	in	the	background	
•  Application	process	free	to	perform	useful	compute	in	the	foreground	
•  Overlap	of	computation	and	communication	=>	Better	Overall	Application	

Performance	
•  Increased	buffer	requirement	
•  Poor	communication	performance	if	used	for	all	types	of	communication	

operations	

Analyzing	Overlap	Potential	of	Eager	Protocol	

Application	
	Process	

Application	
	Process	

Network	Interface	
Card	

Network	Interface	
Card	

Schedule	
Send	

Operation	

Schedule	
Receive	
Operation	

Check	for	
Completion	

Check	for	
Completion	

Complete	 Complete	

Impact of changing Eager Threshold on performance of multi-pair
message-rate benchmark with 32 processes on Stampede

Computation	 Communication	 Progress	

25	

•  Application	processes	schedule	communication	operation	
•  Application	process	free	to	perform	useful	compute	in	

the	foreground	
•  Little	communication	progress	in	the	background	
•  All	communication	takes	place	at	final	synchronization	

•  Reduced	buffer	requirement	
•  Good	communication	performance	if	used	for	large	

message	sizes	and	operations	where	communication	
library	is	progressed	frequently	

•  Poor	overlap	of	computation	and	communication	=>	Poor	
Overall	Application	Performance	

Analyzing	Overlap	Potential	of	Rendezvous	Protocol	
Application	
	Process	

Application	
	Process	

Network	Interface	
Card	

Network	Interface	
Card	

Schedule	
Send	

Operation	

Schedule	
Receive	
Operation	

RTS	

Check	for	
Completion	

Check	for	
Completion	

Not	Complete	

Not	Complete	

CTS	

Check	for	
Completion	

Check	for	
Completion	

Not	Complete	

Not	Complete	

Check	for	
Completion	

Check	for	
Completion	

Complete	

Complete	

Computation	 Communication	 Progress	
26	

•  Application	processes	schedule	communication	operation	
•  Application	process	free	to	perform	useful	compute	in	

the	foreground	
•  Application	progresses	communication	very	frequently	
•  Overlap	of	computation	and	communication	=>	Better	

Overall	Application	Performance	
•  Reduced	buffer	requirement	
•  Good	communication	performance	as	communication	

library	is	progressed	frequently	
•  Harder	to	create	such	programs	that	progress	

communication	at	the	exact	time	without	causing	
overhead	

•  Communication	support	entities	(threads,	hardware	
engines,	etc.)	have	their	own	complexities	

But…	What	if	Applications	Progress	Communication	Frequently?	
Application	
	Process	

Application	
	Process	

Network	Interface	
Card	

Network	Interface	
Card	

Schedule	
Send	

Operation	

Schedule	
Receive	
Operation	

RTS	

Check	for	
Completion	

Check	for	
Completion	

Not	Complete	

Not	Complete	

CTS	

Check	for	
Completion	

Check	for	
Completion	

Complete	
Complete	

Computation	 Communication	 Progress	

27	

Can	we	design	dynamic	and	adaptive	point-to-point	
communication	mechanisms	that	can	deliver	the	best	

1. Communication	performance	
2. Overlap	of	computation	and	communication		
3. Memory	footprint	

Broad	Challenge	

28	

Proposed	Designs	and	Expected	Benefits	at	a	High-level	

Process	on	Node	1	 Process	on	Node	2	

Process	
Pair	

Eager	
Threshold	(KB)	

0	–	4	 32	

1	–	5	 64	

2	–	6	 128	

3	–	7	 32	

Eager	Threshold	for	Example	Communication	Pattern	with	Different	Designs	

•  Default	
–  Poor	overlap;		Low	memory	requirement	

•  Manually	Tuned	
–  Good	overlap;	High	memory	requirement	

•  Dynamic	+	Adaptive	
–  Good	overlap;	Optimal	memory	requirement	

0	 1	 2	 3	

4	 5	 6	 7	

Default	

16	KB	 16	KB	 16	KB	 16	KB	
0	 1	 2	 3	

4	 5	 6	 7	

Manually	Tuned	

128	KB	 128	KB	 128	KB	 128	KB	
0	 1	 2	 3	

4	 5	 6	 7	

Dynamic	+	Adaptive	

32	KB	 64	KB	 128	KB	 32	KB	

Desired	Eager	Threshold	for	Example	Communication	Pattern	

H. Subramoni, S. Chakraborty, D. K. Panda, Designing Dynamic & Adaptive MPI Point-to-Point Communication
Protocols for Efficient Overlap of Computation & Communication, ISC'17 - Best Paper 29	

MPI	Library	

SRQ	#1	

Buffer	

Buffer	

QP	

Application	
Application	Data	

SRQ	#2	

Buffer	

Buffer	

•  																																																																																																																										;	Failure:	“-1”		
•  Allocate	larger	internal	communication	buffers	of	larger	size	and	receive	queues	

Identifying	the	New	Eager-Threshold	and	Allocating	Resources	for	Change	

High-Performance	Networks	

Pre-registered	Communication	Buffers	 Pre-registered	Communication	Buffers	

Buffer	 Buffer	

Buffer	 Buffer	

Application	Data	

NEW_CONN_HANDSHAKE_REQ	

Req_Eager_Thresholdnew	

SRQ	#1	

Buffer	

Buffer	

SRQ	#2	

Buffer	

Buffer	

NEW_CONN_HANDSHAKE_REP	

Synced_Eager_Thresholdnew	

Buffer	 Buffer	

Buffer	 Buffer	NCHR	

QP	

NCHR	

30	

Application	
Application	Data	

MPI	Library	

SRQ	#2	

Buffer	

Buffer	

•  Process	pair	always	has	one	active	connection	
•  Messages	will	not	have	to	wait	for	connection	establishment	

Designing	Dynamic	and	Adaptive	Point-to-point	Protocols	

High-Performance	Networks	

Pre-registered	Communication	Buffers	 Pre-registered	Communication	Buffers	

Buffer	 Buffer	

Buffer	 Buffer	

Application	Data	

SRQ	#1	

Buffer	

Buffer	

SRQ	#1	

Buffer	

Buffer	

SRQ	#2	

Buffer	

Buffer	

Buffer	 Buffer	

Buffer	 Buffer	NCR	
NEW_CONN_REQ	(New	QP)	

NEW_CONN_REP	(New	QP)	
NCR	

QP	 QP	

CONN_EST	

CONN_EST	
QP	 QP	

C_E	

CONN_EST_ACK	

C_E	C_E_ACK	 C_E_ACK	

CONN_EST_ACK	

Handshake	protocol	ensure	no	loss	of	messages	

31	

MPI	Library	

Application	

•  Increase	in	memory	allocated	is	a	concern	
•  Proposed	design	attempts	to	free	them	if	

•  Buffer	has	not	been	in	use	continually	for	
user	defined	period	of	time	

•  Uses	weights	to	determine	which	set	of	
buffers	are	least	recently	used	

•  Prevents	trashing	behavior	where	library	
gets	into	continuous	loop	of	allocation	and	
deallocation	

•  Significantly	reduces	memory	overhead	of	
dynamic	and	adaptive	designs	to	less	than	50%	
of	what	the	manually	tuned	designs	can	offer.	

Mitigating	Memory	Footprint	Requirements	

High-Performance	Networks	

Pre-registered	Communication	Buffers	

Buffer	 Buffer	

Buffer	 Buffer	

Buffer	 Buffer	

Buffer	 Buffer	

32	

Using MVAPICH2 and TAU

●  To	set	CVARs	or	read	PVARs	using	TAU	for	an	uninstrumented	binary:	
%	export	TAU_TRACK_MPI_T_PVARS=1	
%	export	TAU_MPI_T_CVAR_METRICS=	

	MPIR_CVAR_VBUF_POOL_REDUCED_VALUE[1],		
	MPIR_CVAR_IBA_EAGER_THRESHOLD	

%	export	TAU_MPI_T_CVAR_VALUES=32,64000	
%	export	PATH=/path/to/tau/x86_64/bin:$PATH	
%	mpirun	-np	1024	tau_exec	-T	mvapich2,mpit			./a.out	
%	paraprof		

33	

VBUF usage without CVARs

34	

VBUF usage with CVARs

Total memory used by VBUFs is reduced from 3,313,056 to 1,815,056

35	

VBUF Memory Usage Without CVAR

36	

VBUF Memory Usage With CVAR

% export TAU_TRACK_MPI_T_PVARS=1
% export TAU_MPI_T_CVAR_METRICS=MPIR_CVAR_VBUF_POOL_SIZE
% export TAU_MPI_T_CVAR_VALUES=16
% mpirun -np 1024 tau_exec -T mvapich2 ./a.out

37	

Outline	

•  Introduction	
•  The	MPI	Tools	Interfaces	and	Benefits	
•  Integrating	TAU	and	MVAPICH2	with	MPI_T	
•  Use	Cases	
•  TAU	Performance	System®		

38	

TAU	Performance	System®	

Parallel performance framework and toolkit
•  Supports all HPC platforms, compilers, runtime system
•  Provides portable instrumentation, measurement, analysis

39	

TAU	Performance	System	

40	

Instrumentation
•  Fortran, C++, C, UPC, Java, Python, Chapel, Spark
•  Automatic instrumentation

Measurement and analysis support
•  MPI, OpenSHMEM, ARMCI, PGAS, DMAPP
•  pthreads, OpenMP, OMPT interface, hybrid, other thread models
•  GPU, CUDA, OpenCL, OpenACC
•  Parallel profiling and tracing
•  Use of Score-P for native OTF2 and CUBEX generation

Analysis
•  Parallel profile analysis (ParaProf), data mining (PerfExplorer)
•  Performance database technology (TAUdb)
•  3D profile browser

	

Instrumentation	

Source	instrumentation	using	a	preprocessor	
•  Add	timer	start/stop	calls	in	a	copy	of	the	source	code.	
•  Use	Program	Database	Toolkit	(PDT)	for	parsing	source	code.	
•  Requires	recompiling	the	code	using	TAU	shell	scripts	(tau_cc.sh,	tau_f90.sh)	
•  Selective	instrumentation	(filter	file)	can	reduce	runtime	overhead	and		narrow	
instrumentation	focus.		

Compiler-based	instrumentation	
•  Use	system	compiler	to	add	a	special	flag	to	insert	hooks	at	routine	entry/exit.	
•  Requires	recompiling	using	TAU	compiler	scripts	(tau_cc.sh,	tau_f90.sh…)	

Runtime	preloading	of	TAU’s	Dynamic	Shared	Object	(DSO)		
•  No	need	to	recompile	code!	Use	mpirun	tau_exec	./app		with	options.	
•  Requires	dynamic	executable	(link	using	–dynamic	on	Theta).	

Add	hooks	in	the	code	to	perform	measurements	

41	

TAU Instrumentation Approach

Supports both direct and indirect performance observation
•  Direct instrumentation of program (system) code (probes)

•  Instrumentation invokes performance measurement

•  Event measurement: performance data, meta-data, context
•  Indirect mode supports sampling based on periodic timer or hardware performance counter

overflow based interrupts

Support for user-defined events
•  Interval (Start/Stop) events to measure exclusive & inclusive duration

•  Atomic events (Trigger at a single point with data, e.g., heap memory)
•  Measures total, samples, min/max/mean/std. deviation statistics

•  Context events (are atomic events with executing context)
•  Measures above statistics for a given calling path

42

Direct Observation: Events

Event types
•  Interval events (begin/end events)

•  Measures exclusive & inclusive durations between events
•  Metrics monotonically increase

•  Atomic events (trigger with data value)
•  Used to capture performance data state
•  Shows extent of variation of triggered values (min/max/mean)

Code events
•  Routines, classes, templates
•  Statement-level blocks, loops

43

inclusive
duration

exclusive
duration

int foo()
{
 int a;
 a =a + 1;

 bar();

 a =a + 1;
 return a;
}

Inclusive and Exclusive Profiles

•  Performance with respect to code regions
•  Exclusive measurements for region only
•  Inclusive measurements includes child regions

44

How	much	data	do	you	want?	

Limited
Profile

Flat
Profile

Loop
Profile

Callsite
Profile

Callpath
Profile

Trace

O(KB) O(TB)

45	

Types	of	Performance	Profiles	

Flat	profiles	
•  Metric	(e.g.,	time)	spent	in	an	event	
•  Exclusive/inclusive,	#	of	calls,	child	calls,	…	

Callpath	profiles	
•  Time	spent	along	a	calling	path	(edges	in	callgraph)	
•  “main=>	f1	=>	f2	=>	MPI_Send”	
•  Set	the	TAU_CALLPATH	and	TAU_CALLPATH_DEPTH	environment	variables	

Callsite	profiles	
•  Time	spent	along	in	an	event	at	a	given	source	location	
•  Set	the	TAU_CALLSITE	environment	variable	

Phase	profiles	
•  Flat	profiles	under	a	phase	(nested	phases	allowed)	
•  Default	“main”	phase	
•  Supports	static	or	dynamic	(e.g.	per-iteration)	phases	

46	

ParaProf	Profile	Browser	

47	

Click “node X” next to see details

TAU – Flat Profile

48	

ParaProf Thread Statistics Table

49	

Right click over “node X” and choose
Show Thread Statistics Table

TAU – Callsite Profiling

% export TAU_CALLSITE=1

50	

Callsite	Profiling	and	Tracing	

% export TAU_CALLSITE=1

51	

Callsite	Profiling	and	Tracing	

52	

Callsite	Profiling	and	Tracing	

53	

TAU – Callstack Sampling

% export TAU_SAMPLING=1; export TAU_EBS_UNWIND=1

54	

TAU – Event Based Sampling (EBS)

% export TAU_SAMPLING=1
55	

TAU – Callpath Profiling

% export TAU_CALLPATH=1; export TAU_CALLPATH_DEPTH=100

56	

TAU Atomic Events

57	

TAU – Context Events

Bytes	written	to	each	file	

Write	bandwidth	per	file	

58	

Interval and Atomic Events in TAU

59

Interval events
e.g., routines
(start/stop) show
duration

Atomic events
(triggered with
value) show
extent of variation
(min/max/mean)

% export TAU_CALLPATH_DEPTH=0
% export TAU_TRACK_HEAP=1

% export TAU_CALLPATH_DEPTH=1

% export TAU_TRACK_HEAP=1

Atomic events

Context events
=atomic event
+ executing
context

Atomic Events, Context Events

60

Controls depth of executing
context shown in profiles

% export TAU_CALLPATH_DEPTH=2
% export TAU_TRACK_HEAP=1

Context event
=atomic event + executing
context

Context Events (Default)

61

Profiling	 Tracing	

62	

Shows
how much time was
spent in each routine

Shows
when events take place

on a timeline

Flat	profiles	
•  Metric	(e.g.,	time)	spent	in	an	event	
•  Exclusive/inclusive,	#	of	calls,	child	calls,	…	

Callpath	profiles	
•  Time	spent	along	a	calling	path	(edges	in	callgraph)	
•  “main=>	f1	=>	f2	=>	MPI_Send”	
•  Set	the	TAU_CALLPATH_DEPTH	environment	variable	

Phase	profiles	
•  Flat	profiles	under	a	phase	(nested	phases	allowed)	
•  Default	“main”	phase	
•  Supports	static	or	dynamic	(e.g.	per-iteration)	phases	

63	

Types	of	Performance	Profiles	

64	

Limited
Profile

Flat
Profile

Loop
Profile

Phase
Profile

Callpath
Profile

Trace

All levels support multiple
metrics/counters

O(KB) O(TB)

How	much	data	do	you	want?	

65	

Direct	via	Probes	 Indirect	via	Sampling	

•  Exact measurement
•  Fine-grain control
•  Calls inserted into code

•  No code modification
•  Minimal effort
•  Relies on debug symbols (-g

option)
•  TAU_SAMPLING=1

call TAU_START(‘potential’)
// code
call TAU_STOP(‘potential’)	

Performance	Data	Measurement	

Examples	

66	

HPCLinux	OVA:	VirtualBox	

Install	VirtualBox	from	the	USB	Stick	(dmg/exe	file)	
File	->	Import	Appliance	->	Click	browse	->	HPCLinux	->	<LITE>.ova	->	Finish	
Click	on	the	appliance	in	VirtualBox	->	Run	
Username:	livetau	
Password:		
	
%	which	paraprof	

67	

Step	1:	Log-in	to	the	Cluster	(ri.cse.ohio-state.edu)	

Linux/OS	X	(Mac)	
Open	your	favorite	Terminal	
ssh	–Y	<username>@ri.cse.ohio-state.edu	
Enter	password	
	
#	Example:	
$	ssh	–Y	ritutXX@ri.cse.ohio-state.edu	(replace	XX	with	appropriate	number	from	handout)	
Enter	Password:		
$	ls	–l	workshop	
total	76	
drwxr-xr-x		3	root	root	4096	Jul	25	11:24	3Dstencil	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	cthreads	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	debug	
-rw-r--r--		1	root	root		706	Jul	25	11:24	handson.txt	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	hdf5_wrap	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	job_submission	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	manual	
drwxr-xr-x		3	root	root	4096	Jul	25	11:24	matmult	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	memoryleakdetect	
drwxr-xr-x		4	root	root	4096	Jul	25	11:24	miniGhost_ref	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	mm	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	mpic++	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	mpiposix	
drwxr-xr-x	15	root	root	4096	Jul	25	11:24	NPB3.1	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	opari	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	papi	
drwxr-xr-x		4	root	root	4096	Jul	25	11:24	py-c++-f90	
-rw-r--r--		1	root	root	1707	Jul	25	11:24	README	
drwxr-xr-x		2	root	root	4096	Jul	25	11:24	sweep3d	

Windows	

Download	Putty	
•  https://www.putty.org/	

How	to?	
•  https://mediatemple.net/community/products/dv/

204404604/using-ssh-in-putty-	
•  https://www.ssh.com/ssh/putty/windows/	

68	

Driving	Example	(3D	Stencil)	
3D	Stencil	benchmark	

•  Each	process	talks	to	at	
most	six	neighbors	

•  Two	in	each	Cartesian	
dimension	

•  X-right,	X-left	
•  Y-right,	Y-left	
•  Z-right,	Z-left	

•  Repeat	same	
communication	pattern	for	
multiple	iterations	

0 1 2 3

4 5 6 7

9 10 11

12 13 14 15

8

16 17 18 19

20 21 22 23

24 25 26 27

28 29 30 31

3D Stencil communication pattern for a 32
process job scheduled on 4 nodes

Process on Node 1 Process on Node 2

Process on Node 3 Process on Node 4

69	

3Dstencil	on	RI	(OSU)	

cd	~/workshop/3Dstencil	
sbatch	–N	16	–p	batch	./demo.sh	
ls		*.ppk	
Copy	ppk	files	to	your	laptop	and	use	VirtualBox	image	
%	paraprof	*.ppk	&		
	

70	

Example Codes On Stampede2.tacc.utexas.edu

•  % cp ~tg457572/pkgs/workshop.tgz .

•  % tar zxf workshop.tgz

•  % source ~tg457572/tau.bashrc

•  % idev –m 50 –r pearc-tau
(requests a 50 minute interactive node with reservation name pearc-tau)

•  % cd workshop/NPB3.1

•  % make suite

•  % cd bin

•  % mpirun –np 64 ./lu.A.64

•  % tau_pebil_rewrite lu.A.64 lu.i

•  % mpirun –np 64 ./lu.i

•  % pprof ; paraprof

71	

Simplifying the use of TAU!
Uninstrumented code:

•  % mpif90 –g –O3 matmult.f90

•  % mpirun –np 16 ./a.out

With TAU:
•  % mpirun –np 16 tau_exec ./a.out

•  % paraprof

•  For more Information at the statement level:

•  % mpirun –np 16 tau_exec –ebs ./a.out (or use TAU_SAMPLING=1)

•  To rewrite the binary to instrument individual functions (using PEBIL):

•  % tau_pebil_rewrite a.out a.inst; mpirun –np 16 ./a.inst (beta)

•  % pprof -a | more

•  % paraprof (GUI)

72	

TAU for Heterogeneous Measurement

Multiple performance perspectives
Integrate Host-GPU support in TAU measurement framework

•  Enable use of each measurement approach
•  Include use of PAPI and CUPTI
•  Provide profiling and tracing support

Tutorial
•  Use TAU library wrapping of libraries
•  Use tau_exec to work with binaries

 % ./a.out (uninstrumented)
 % tau_exec –T <configuration tags> –cupti ./a.out
 % paraprof

73	

TAU Execution Command (tau_exec)
Uninstrumented execution

•  % mpirun -np 256 ./a.out
Track GPU operations

•  % mpirun –np 256 tau_exec –cupti ./a.out
•  % mpirun –np 256 tau_exec –cupti -um ./a.out (for Unified Memory)
•  % mpirun –np 256 tau_exec –opencl ./a.out
•  % mpirun –np 256 tau_exec –openacc ./a.out

Track MPI performance
•  % mpirun -np 256 tau_exec ./a.out

Track OpenMP, and MPI performance (MPI enabled by default)
•  % export TAU_OMPT_SUPPORT_LEVEL=full;

% export TAU_OMPT_RESOLVE_ADDRESS_EAGERLY=1
•  % mpirun -np 256 tau_exec –T ompt,tr6,mpi –ompt ./a.out

Track memory operations
•  % export TAU_TRACK_MEMORY_LEAKS=1
•  % mpirun –np 256 tau_exec –memory_debug ./a.out (bounds check)

Use event based sampling (compile with –g)
•  % mpirun –np 256 tau_exec –ebs ./a.out
•  Also –ebs_source=<PAPI_COUNTER> -ebs_period=<overflow_count>

74

Using TAU
TAU supports several measurement and thread options

Phase profiling, profiling with hardware counters (papi), MPI library, CUDA, Beacon (backplane for
event notification – online monitoring), PDT (automatic source instrumentation) …
Each measurement configuration of TAU corresponds to a unique stub makefile and library that is
generated when you configure it

To instrument source code automatically using PDT
Choose an appropriate TAU stub makefile in <arch>/lib:
% source ~tg457572/tau.bashrc
% export TAU_MAKEFILE=$TAU/Makefile.tau-mvapich2-icpc-mpi-pdt
% export TAU_OPTIONS=‘-optVerbose …’ (see tau_compiler.sh)

Use tau_f90.sh, tau_cxx.sh, tau_upc.sh, or tau_cc.sh as
 F90, C++, UPC, or C compilers respectively:
% mpif90 foo.f90 changes to
% tau_f90.sh foo.f90

Set runtime environment variables, execute application and analyze performance
data:

% pprof (for text based profile display)
% paraprof (for GUI)

 75	

 Choosing TAU_MAKEFILE
% source ~tg457572/tau.bashrc
% ls $TAU/Makefile.*
/home1/00494/tg457572/pkgs/tau_latest/x86_64/lib/Makefile.tau-mvapich2-icpc-mpi-pdt	
/home1/00494/tg457572/pkgs/tau_latest/x86_64/lib/Makefile.tau-mvapich2-icpc-mpi-pthread-pdt	
/home1/00494/tg457572/pkgs/tau_latest/x86_64/lib/Makefile.tau-mvapich2-icpc-ompt-mpi-pdt-openmp	
/home1/00494/tg457572/pkgs/tau_latest/x86_64/lib/Makefile.tau-mvapich2-icpc-papi-mpi-pdt-mpit	
/home1/00494/tg457572/pkgs/tau_latest/x86_64/lib/Makefile.tau-mvapich2-icpc-papi-ompt-mpi-pdt-openmp	
/home1/00494/tg457572/pkgs/tau_latest/x86_64/lib/Makefile.tau-pdt	

For an MPI+F90 application with MPI, you may choose
Makefile.tau-mvapich2-icpc-mpi-pdt

•  Supports MPI instrumentation, papi, and PDT for automatic source instrumentation
% export TAU_MAKEFILE=$TAU/Makefile.tau-mvapich2-icpc-mpi-pdt
% tau_f90.sh matrix.f90 -o matrix
OR with build systems:
% make CC=tau_cc.sh CXX=tau_cxx.sh F90=tau_f90.sh
% cmake –DCMAKE_Fortran_COMPILER=tau_f90.sh

 –DCMAKE_C_COMPILER=tau_cc.sh –
DCMAKE_CXX_COMPILER=tau_cxx.sh
% mpirun -np 1024 ./matrix
% paraprof

76	

Configuration tags for tau_exec
% ./configure –pdt=<dir> -mpi –papi=<dir>; make install
Creates in $TAU:
Makefile.tau-papi-mpi-pdt(Configuration parameters in stub makefile)
shared-papi-mpi-pdt/libTAU.so

% ./configure –pdt=<dir> -mpi; make install creates
Makefile.tau-mpi-pdt
shared-mpi-pdt/libTAU.so

To explicitly choose preloading of shared-<options>/libTAU.so change:
% mpirun -np 256 ./a.out to
% mpirun -np 256 tau_exec –T <comma_separated_options> ./a.out

% mpirun -np 256 tau_exec –T papi,mpi,pdt ./a.out
Preloads $TAU/shared-papi-mpi-pdt/libTAU.so
% mpirun -np 256 tau_exec –T papi ./a.out
Preloads $TAU/shared-papi-mpi-pdt/libTAU.so by matching.
% mpirun –np 256 tau_exec –T papi,mpi,pdt –s ./a.out
Does not execute the program. Just displays the library that it will preload if executed
without the –s option.
NOTE: -mpi configuration is selected by default. Use –T serial for
Sequential programs.

77 77	

TAU’s Static Analysis System:
Program Database Toolkit (PDT)

Application
/ Library

C / C++
parser

Fortran parser
F77/90/95

C / C++
IL analyzer

Fortran
IL analyzer

Program
Database

Files

IL IL

DUCTAPE
TAU �

instrumentor
Automatic source
instrumentation

.

.

.

78	

Automatic Source Instrumentation using PDT

tau_instrumentor

Parsed
program

Instrumentation
specification file

Instrumented
copy of source

TAU source
analyzer

Application
source

79	

Automatic Instrumentation

•  Use TAU’s compiler wrappers
•  Simply replace CXX with tau_cxx.sh, etc.

•  Automatically instruments source code, links with TAU libraries.

•  Use tau_cc.sh for C, tau_f90.sh for Fortran, tau_upc.sh for UPC, etc.

Before
% cat Makefile
CXX = mpicxx
F90 = mpif90
CXXFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
 $(CXX) $(LDFLAGS) $(OBJS) -o $@
 $(LIBS)

.cpp.o:
 $(CXX) $(CXXFLAGS) -c $<

% make

After
% cat Makefile
CXX = tau_cxx.sh
F90 = tau_f90.sh
CXXFLAGS =
LIBS = -lm
OBJS = f1.o f2.o f3.o … fn.o

app: $(OBJS)
 $(CXX) $(LDFLAGS) $(OBJS) -o $@
 $(LIBS)

.cpp.o:
 $(CXX) $(CXXFLAGS) -c $<

% export TAU_MAKEFILE=
 $TAU/Makefile.tau-papi-mpi-pdt

% make

80 80	

Selective Instrumentation File: Compile time, Runtime

% export TAU_OPTIONS=‘-optTauSelectFile=select.tau …’
% cat select.tau
BEGIN_INCLUDE_LIST
int main#
int dgemm#
END_INCLUDE_LIST
BEGIN_FILE_INCLUDE_LIST
Main.c
Blas/*.f77
END_FILE_INCLUDE_LIST
replace include with exclude list

BEGIN_INSTRUMENT_SECTION
loops routine=“foo”
loops routine=“int main#”
END_INSTRUMENT_SECTION
It can be used at compile time or at runtime:

% export TAU_SELECT_FILE = select.tau

81	

Installing	and	Configuring	TAU	

• Installing	PDT:	
•  wget	tau.uoregon.edu/pdt_lite.tgz	
•  ./configure	–prefix=<dir>;	make	;	make	install	

• Installing	TAU:	
•  	wget	tau.uoregon.edu/tau.tgz;				tar	zxf	tau.tgz;	cd	tau-2.<ver>	
•  	wget	http://tau.uoregon.edu/ext.tgz		
•  	./configure	–mpi	-bfd=download	-pdt=<dir>	-papi=<dir>	...	
•  make	install	

• Using	TAU:	
•  export	TAU_MAKEFILE=<taudir>/x86_64/	

	 	 	 	lib/Makefile.tau-<TAGS>	
•  %	export	TAU_OPTIONS=‘-optTauSelectFile=select.tau’	
•  make	CC=tau_cc.sh			CXX=tau_cxx.sh			F90=tau_f90.sh	

82	

INSTALLING TAU on Laptops

Installing TAU under Mac OS X:
•  Download Java
•  http://tau.uoregon.edu/java.dmg
•  Install java.dmg
•  wget http://tau.uoregon.edu/tau.dmg
•  Install tau.dmg

Installing TAU under Windows
•  http://tau.uoregon.edu/tau.exe

Installing TAU under Linux
•  http://tau.uoregon.edu/tau.tgz
• ./configure; make install
•  export PATH=<taudir>/x86_64/bin:$PATH

83	

NPB-MZ-MPI	Suite	

The	NAS	Parallel	Benchmark	suite	(MPI+OpenMP	version)	
•  Available	from:	

http://www.nas.nasa.gov/Software/NPB	
•  3	benchmarks	in	Fortran77	
•  Configurable	for	various	sizes	&	classes	

Move	into	the	NPB3.3-MZ-MPI	root	directory	
	
	

Subdirectories	contain	source	code	for	each	benchmark	
•  plus	additional	configuration	and	common	code	

The	provided	distribution	has	already	been	configured	for	the	tutorial,	such	that	
it's	ready	to	“make”	one	or	more	of	the	benchmarks	and	install	them	into	a	
(tool-specific)	“bin”	subdirectory	

84	

% ls
bin/ common/ jobscript/ Makefile README.install SP-MZ/
BT-MZ/ config/ LU-MZ/ README README.tutorial sys/

NPB-MZ-MPI	/	BT	(Block	Tridiagonal	Solver)	

What	does	it	do?	
•  Solves	a	discretized	version	of	the	unsteady,	compressible	Navier-Stokes	
equations	in	three	spatial	dimensions	

•  Performs	200	time-steps	on	a	regular	3-dimensional	grid	
Implemented	in	20	or	so	Fortran77	source	modules	
	
Uses	MPI	&	OpenMP	in	combination	

•  16	processes	each	with	4	threads	should	be	reasonable	
	

•  bt-mz.B.16	should	take	around	1	minute	
	

85	

NPB-MZ-MPI	/	BT:	config/make.def	

86	

SITE- AND/OR PLATFORM-SPECIFIC DEFINITIONS.

#---

#---
Configured for generic MPI with GCC compiler
#---
#OPENMP = -fopenmp # GCC compiler
OPENMP = -qopenmp –extend-source # Intel compiler

...
#---
The Fortran compiler used for MPI programs
#---

F77 = mpif90 # Intel compiler

Alternative variant to perform instrumentation

...

Default (no instrumentation)

Building	an	NPB-MZ-MPI	Benchmark	

Type	“make”	for	
instructions	

make	suite	
	

87	

% make
 ===
 = NAS PARALLEL BENCHMARKS 3.3 =
 = MPI+OpenMP Multi-Zone Versions =
 = F77 =
 ===

 To make a NAS multi-zone benchmark type

 make <benchmark-name> CLASS=<class> NPROCS=<nprocs>

 where <benchmark-name> is “bt-mz”, “lu-mz”, or “sp-mz”
 <class> is “S”, “W”, “A” through “F”
 <nprocs> is number of processes

 [...]

 * Custom build configuration is specified in config/make.def *
 * Suggested tutorial exercise configuration for HPC systems: *
 * make bt-mz CLASS=C NPROCS=8 *

TAU	Source	Instrumentation	

Edit	config/make.def	to	adjust	build	configuration	
•  Uncomment	specification	of	compiler/linker:	F77	=	tau_f77.sh	or	use		
make	F77=tau_f77.sh	

Make	clean	and	build	new	tool-specific	executable	
Change	to	the	directory	containing	the	new	executable	before	running	it	with	the	

desired	tool	configuration	
	
	
		

88	

tau_exec	

89	

$ tau_exec

Usage: tau_exec [options] [--] <exe> <exe options>

Options:
 -v Verbose mode
 -s Show what will be done but don't actually do anything (dryrun)
 -qsub Use qsub mode (BG/P only, see below)
 -io Track I/O
 -memory Track memory allocation/deallocation
 -memory_debug Enable memory debugger
 -cuda Track GPU events via CUDA
 -cupti Track GPU events via CUPTI (Also see env. variable TAU_CUPTI_API)
 -opencl Track GPU events via OpenCL
 -openacc Track GPU events via OpenACC (currently PGI only)
 -ompt Track OpenMP events via OMPT interface
 -armci Track ARMCI events via PARMCI
 -ebs Enable event-based sampling
 -ebs_period=<count> Sampling period (default 1000)
 -ebs_source=<counter> Counter (default itimer)
 -um Enable Unified Memory events via CUPTI
 -T <DISABLE,GNU,ICPC,MPI,OMPT,OPENMP,PAPI,PDT,PROFILE,PTHREAD,SCOREP,SERIAL> : Specify TAU tags
 -loadlib=<file.so> : Specify additional load library
 -XrunTAUsh-<options> : Specify TAU library directly
 -gdb Run program in the gdb debugger

Notes:

 Defaults if unspecified: -T MPI
 MPI is assumed unless SERIAL is specified

No need to recompile the application!

					tau_exec	preloads	
the	TAU	wrapper	
libraries	and	
performs	
measurements.		

	

tau_exec	Example	(continued)	

					tau_exec	can	
enable	event	
based	sampling	
while	launching	
the	executable	
using	env	
TAU_SAMPLING=1	
or	tau_exec	-ebs	

90	

Example:
 mpirun –np 2 tau_exec -T icpc,ompt,mpi -ompt ./a.out
 mpirun -np 2 tau_exec -io ./a.out
Example - event-based sampling with samples taken every 1,000,000 FP instructions
 mpirun -np 8 tau_exec -ebs -ebs_period=1000000 -ebs_source=PAPI_FP_INS ./ring
Examples - GPU:
 tau_exec -T serial,cupti -cupti ./matmult (Preferred for CUDA 4.1 or later)
 tau_exec -openacc ./a.out
 tau_exec -T serial –opencl ./a.out (OPENCL)
 mpirun –np 2 tau_exec -T mpi,cupti,papi -cupti -um ./a.out (Unified Virtual Memory in CUDA 6.0+)

qsub mode (IBM BG/Q only):
 Original:
 qsub -n 1 --mode smp -t 10 ./a.out
 With TAU:
 tau_exec -qsub -io -memory -- qsub -n 1 … -t 10 ./a.out

Memory Debugging:
 -memory option:
 Tracks heap allocation/deallocation and memory leaks.
 -memory_debug option:
 Detects memory leaks, checks for invalid alignment, and checks for
 array overflow. This is exactly like setting TAU_TRACK_MEMORY_LEAKS=1
 and TAU_MEMDBG_PROTECT_ABOVE=1 and running with -memory

Event	Based	Sampling	with	TAU	

Launch	paraprof	
	
	
	
	
	
		
	
Right	Click	on	Node	0	and	choose	
Show	Thread	Statistics	Table	
	

91	

% cd MZ-NPB3.3-MPI; cat README
% make clean;
% make suite
% cd bin
% idev –m 50 –r pearc-tau
% source ~tg457572/tau.bashrc
% export OMP_NUM_THREADS=4
% mpirun –np 4 tau_exec –T ompt –ebs ./bt-mz.B.4
% On head node:
% source ~tg457572/tau.bashrc
% paraprof

ParaProf	

Click	on	Columns:	
to	sort	by	incl	time	
	
Open	binvcrhs	
Click	on	Sample	

	
	
	
	
	
		

92	

ParaProf	

93	

Create	a	Selective	Instrumentation	File,	Re-instrument,	Re-run	

	
	
	
	
	
		

94	

ParaProf	with	Optimized	Instrumentation		

95	

3D	Visualization	with	ParaProf	

96	

ParaProf:	Node	0	

Optimized	
instrumentation!	
	
	
	
	
		

97	

Compile-Time Options
Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optVerbose Turn on verbose debugging messages
-optCompInst Use compiler based instrumentation
-optNoCompInst Do not revert to compiler instrumentation if source

 instrumentation fails.
�-optTrackIO Wrap POSIX I/O call and calculates vol/bw of I/O operations

 (Requires TAU to be configured with –iowrapper)
�-optTrackGOMP Enable tracking GNU OpenMP runtime layer (used without –opari)
�-optMemDbg Enable runtime bounds checking (see TAU_MEMDBG_* env vars)
-optKeepFiles Does not remove intermediate .pdb and .inst.* files
-optPreProcess Preprocess sources (OpenMP, Fortran) before instrumentation
-optTauSelectFile=”<file>" Specify selective instrumentation file for tau_instrumentor
-optTauWrapFile=”<file>" Specify path to link_options.tau generated by tau_gen_wrapper
-optHeaderInst Enable Instrumentation of headers
-optTrackUPCR Track UPC runtime layer routines (used with tau_upc.sh)
-optLinking="" Options passed to the linker. Typically

 $(TAU_MPI_FLIBS) $(TAU_LIBS) $(TAU_CXXLIBS)
-optCompile="" Options passed to the compiler. Typically

 $(TAU_MPI_INCLUDE) $(TAU_INCLUDE) $(TAU_DEFS)
-optPdtF95Opts="" Add options for Fortran parser in PDT (f95parse/gfparse) …

98	

Compile-Time Options (contd.)

Optional parameters for the TAU_OPTIONS environment variable:
% tau_compiler.sh

-optShared Use TAU’s shared library (libTAU.so) instead of static library (default)
�-optPdtCxxOpts=“” Options for C++ parser in PDT (cxxparse).
�-optPdtF90Parser=“” Specify a different Fortran parser
�-optPdtCleanscapeParser Specify the Cleanscape Fortran parser instead of GNU gfparser
-optTau=“” Specify options to the tau_instrumentor
-optTrackDMAPP Enable instrumentation of low-level DMAPP API calls on Cray
-optTrackPthread Enable instrumentation of pthread calls

See tau_compiler.sh for a full list of TAU_OPTIONS.

…

99	

Measuring Memory Footprint

100

% export TAU_TRACK_MEMORY_FOOTPRINT=1
Paraprof:
Right click on a node -> Show Context Event Window -> see memory events

100	

Usage Scenarios with MVAPICH2

•  TAU measures the high water mark of total memory usage
(TAU_TRACK_MEMORY_FOOTPRINT=1), finds that it is at 98% of available memory, and
queries MVAPICH2 to find out how much memory it is using. Based on the number of pools
allocated and used, it requests it to reduce the number of VBUF pools and controls the size of the
these pools using the MPI-T interface. The total memory memory footprint of the application
reduces.

•  TAU tracks the message sizes of messages (TAU_COMM_MATRIX=1), detects excessive time
spent in MPI_Wait and other synchronization operations. It compares the average message size
with the eager threshold and sets the new eager threshold value to match the message size. This
could be done offline by re-executing the application with the new CVAR setting for eager
threshold or online.

•  TAU uses Beacon (backplane for event and control notification) to observe the performance of a
running application (for e.g., vbuf pool statistics, high water mark of total and vbuf memory usage,
message size statistics).

101	

Performance/Overlap	with	128KB	Messages at Different Process Counts

0	

2	

4	

6	

8	

10	

128	 256	 512	 1K	 2K	 4K	 8K	

La
te
nc
y	
(m

s)
	

Number	of	Processes	

Communication	Time	

Default	 Dynamic	Threshold	

0	

20	

40	

60	

80	

100	

128	 256	 512	 1K	 2K	 4K	 8K	

O
ve
rla

p	
(%

)	

Number	of	Processes	

Overlap	Potential	

Default	 Dynamic	Threshold	

0	

3	

6	

9	

12	

15	

128	 256	 512	 1K	 2K	 4K	 8K	

La
te
nc
y	
(m

s)
	

Number	of	Processes	

Overall	Performance	

Default	 Dynamic	Threshold	

•  Dynamic	Threshold	has	degradation	in	raw	communication	performance	

•  Dynamic	Threshold	has	significant	benefits	for	overlap	

•  Dynamic	Threshold	better	for	overall	application	execution	time	

102	

Introspecting	Impact	of	Eager	Threshold	on	3D	Stencil	Benchmark	

103	

Default	 Optimized	

Less	Overlap,	Less	Useful	
work	done	by	
Application!	

More	Overlap,	More	
Useful	work	done	by	

Application!	

0	

100	

200	

300	

400	

500	

600	

128	 256	 512	 1K	

W
al
l	C
lo
ck
	T
im

e	
(s
ec
on

ds
)	

Number	of	Processes	

Execution	Time	

Default	 Threshold=17K	 Threshold=64K	 Threshold=128K	 Dynamic	Threshold	

Performance of Amber at Different Process Counts

•  Optimal	values	selected	manually	(Manual	Tuning)	changes	based	on	job	size	and	problem	size	
–  Cumbersome,	Error	prone,	and	Impractical	

•  Dynamic	Threshold	delivers	performance	on	par	with	best	manually	tuned	version	for	all	job/
problem	size	
–  High	Performance	+	High	Productivity	

Performance of Amber at Different Process Counts (Cont.)

0	
1	
2	
3	
4	
5	
6	
7	
8	
9	

128	 256	 512	 1K	Re
la
tiv

e	
M
em

or
y	
Co

ns
um

pt
io
n	

Number	of	Processes	

Relative	Memory	Consumption	

Default	 Threshold=17K	 Threshold=64K	 Threshold=128K	 Dynamic	Threshold	

•  Default	design	gives	best	memory	scalability	
–  Unable	to	deliver	the	best	performance	

•  Dynamic	Threshold	able	to	keep	memory	footprint	to	what	is	absolutely	needed	to	obtain	
performance	benefits	

Analyzing Dynamic Eager-Threshold Changes

Number	of	Threshold	Switches	

N
um

be
r	o

f	P
ro
ce
ss
es
	

256	Processes	

Number	of	Threshold	Switches	

N
um

be
r	o

f	P
ro
ce
ss
es
	

512	Processes	

Number	of	Threshold	Switches	

N
um

be
r	o

f	P
ro
ce
ss
es
	

1024	Processes	

•  Number	of	Eager	switches	correspond	to	larger	communication	requirements	at	the	application	level	

Max	Eager	Threshold	

N
um

be
r	o

f	P
ro
ce
ss
es
	 256	Processes	

Max	Eager	Threshold	

N
um

be
r	o

f	P
ro
ce
ss
es
	 512	Processes	

Max	Eager	Threshold	

N
um

be
r	o

f	P
ro
ce
ss
es
	 1024	Processes	

106	

Time	taken	to	Switch	Thresholds	and	Allocate/Free	Communication	Buffers	

0.00	

0.01	

0.02	

0.03	

0.04	

0.05	

0.06	

128	 256	 512	 1024	

Ti
m
e	
Ta
ke
n	
(S
ec
on

ds
)	

Number	of	Processes	

Time	to	Switch	Threshold	
Once	

Maximum	 Average	

0.00	

0.20	

0.40	

0.60	

0.80	

128	 256	 512	 1024	

Ti
m
e	
Ta
ke
n	
(S
ec
on

ds
)		

Number	of	Processes	

Cumulative	Time	Spent	in	
Switching	Thresholds	

Maximum	 Average	

0.00	

0.20	

0.40	

0.60	

0.80	

1.00	

128	 256	 512	 1024	

Ti
m
e	
Ta
ke
n	
(S
ec
on

ds
)		

Number	of	Processes	

Time	Spent	in	Allocating	/	
Freeing	Buffers	

Min-Alloc	 Max-Alloc	

Min-Free	 Max-Free	

•  Maximum	overhead	of	establishing	new	connection	is	very	low	(~40	ms)	

•  Maximum	cumulative	time	spent	by	each	process	for	eager-threshold	switching	very	low	(<	0.5	s)	
–  Less	than	0.1%	of	overall	execution	time	

•  Time	for	dynamically	allocating	and	freeing	internal	communication	buffers	also	very	low	
–  Only	a	negligible	percentage	of	the	overall	execution	time	

107	

Other Runtime Environment Variables
Environment	Variable	 Default	 Description	

TAU_TRACE	 0	 Setting	to	1	turns	on	tracing	

TAU_CALLPATH	 0	 Setting	to	1	turns	on	callpath	profiling	

TAU_TRACK_MEMORY_FOOTPRINT	 0	 Setting	to	1	turns	on	tracking	memory	usage	by	sampling	periodically	the	
resident	set	size	and	high	water	mark	of	memory	usage	

TAU_SELECT_FILE	 Specify	the	path	to	runtime	selective	instrumentation	file	for	filtering	events	
using	exclude	and	include	lists	of	routines	and/or	files.		

TAU_CALLPATH_DEPTH	 2	 Specifies	depth	of	callpath.	Setting	to	0	generates	no	callpath	or	routine	
information,	setting	to	1	generates	flat	profile	and	context	events	have	just	
parent	information	(e.g.,	Heap	Entry:	foo)	

TAU_SAMPLING	 0	 Setting	to	1	enables	event-based	sampling.	

TAU_TRACK_SIGNALS	 0	 Setting	to	1	generate	debugging	callstack	info	when	a	program	crashes	

TAU_COMM_MATRIX	 0	 Setting	to	1	generates	communication	matrix	display	using	context	events	

TAU_THROTTLE	 1	 Setting	to	0	turns	off	throttling.	Enabled	by	default	to	remove	
instrumentation	in	lightweight	routines	that	are	called	frequently	

TAU_THROTTLE_NUMCALLS	 100000	 Specifies	the	number	of	calls	before	testing	for	throttling	

TAU_THROTTLE_PERCALL	 10	 Specifies	value	in	microseconds.	Throttle	a	routine	if	it	is	called	over	100000	
times	and	takes	less	than	10	usec	of	inclusive	time	per	call	

TAU_COMPENSATE	 0	 Setting	to	1	enables	runtime	compensation	of	instrumentation	overhead	

TAU_PROFILE_FORMAT	 Profile	 Setting	to	“merged”	generates	a	single	file.	“snapshot”	generates	xml	format	

TAU_METRICS	 TIME	 Setting	to	a	comma	separated	list	generates	other	metrics.	(e.g.,	
TIME,ENERGY,PAPI_FP_INS,PAPI_NATIVE_<event>:<subevent>)	

108	

Runtime Environment Variables (contd.)
Environment	Variable	 Default	 Description	

TAU_TRACK_MEMORY_LEAKS	 0	 Tracks	allocates	that	were	not	de-allocated	(needs	–optMemDbg	or	tau_exec	
–memory)	

TAU_EBS_SOURCE	 TIME	 Allows	using	PAPI	hardware	counters	for	periodic	interrupts	for	EBS	(e.g.,	
TAU_EBS_SOURCE=PAPI_TOT_INS	when	TAU_SAMPLING=1)	

TAU_EBS_PERIOD	 100000	 Specifies	the	overflow	count	for	interrupts	

TAU_MEMDBG_ALLOC_MIN/MAX	 0	 Byte	size	minimum	and	maximum	subject	to	bounds	checking	(used	with	
TAU_MEMDBG_PROTECT_*)	

TAU_MEMDBG_OVERHEAD	 0	 Specifies	the	number	of	bytes	for	TAU’s	memory	overhead	for	memory	
debugging.		

TAU_MEMDBG_PROTECT_BELOW/
ABOVE	

0	 Setting	to	1	enables	tracking	runtime	bounds	checking	below	or	above	the	
array	bounds	(requires	–optMemDbg	while	building	or	tau_exec	–memory)	

TAU_MEMDBG_ZERO_MALLOC	 0	 Setting	to	1	enables	tracking	zero	byte	allocations	as	invalid	memory	
allocations.		

TAU_MEMDBG_PROTECT_FREE	 0	 Setting	to	1	detects	invalid	accesses	to	deallocated	memory	that	should	not	
be	referenced	until	it	is	reallocated	(requires	–optMemDbg	or	tau_exec	–
memory)	

TAU_MEMDBG_ATTEMPT_CONTINUE	 0	 Setting	to	1	allows	TAU	to	record	and	continue	execution	when	a	memory	
error	occurs	at	runtime.		

TAU_MEMDBG_FILL_GAP	 Undefined	 Initial	value	for	gap	bytes	

TAU_MEMDBG_ALINGMENT	 sizeof(int)	 Byte	alignment	for	memory	allocations	

TAU_EVENT_THRESHOLD	 0.5	 Define	a	threshold	value	(e.g.,	.25	is	25%)	to	trigger	marker	events	for	min/
max	

109	

Evaluating	Extent	of	Vectorization	on	MIC	

% export TAU_MAKEFILE=$TAUROOT/mic_linux/lib/Makefile.tau-papi-mpi-pdt
% export TAU_METRICS=TIME,

 PAPI_NATIVE_VPU_ELEMENTS_ACTIVE,PAPI_NATIVE_VPU_INSTRUCTIONS_EXECUTED
110	

ParaProf’s	Topology	Display	Window	(BGQ)	

111	

ParaProf’s	Scalable	3D	Visualization	(BGQ)	

786,432 ranks

112	

ParaProf 3D Profile Browser

113	

Download	TAU	from	U.	Oregon	

	
	

http://www.hpclinux.com	[OVA	file]	
http://tau.uoregon.edu/tau.tgz		

for	more	information	
	

Free	download,	open	source,	BSD	license	
	 114	

PRL, University of Oregon, Eugene

www.uoregon.edu

115	

Support Acknowledgments
US Department of Energy (DOE)

•  ANL
•  Office of Science contracts, ECP
•  SciDAC, LBL contracts
•  LLNL-LANL-SNL ASC/NNSA contract
•  Battelle, PNNL and ORNL contract

CEA, France
Department of Defense (DoD)

•  PETTT, HPCMP
National Science Foundation (NSF)

•  SI2-SSI, Glassbox
Intel Corporation
NASA
Partners:

• University of Oregon
• The Ohio State University
• ParaTools, Inc.
• University of Tennessee, Knoxville
• T.U. Dresden, GWT
• Jülich Supercomputing Center

116	

