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Current Trends in HPC
• Tremendous increase in system and 

job sizes

• Interconnects like InfiniBand and 
OmniPath is dominant

• Dense many-core systems like KNL 
are more common

• Hybrid MPI+PGAS models becoming 
popular

SC '16 2

Fast and scalable job-startup is essential!
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Why is Job Startup Important?

Development	and	debugging

Regression	/	Acceptance	testing

Checkpoint	- Restart
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Towards Exascale: Challenges to Address

• Dynamic allocation of 
resources

• Leveraging high-performance 
interconnects

• Exploiting opportunities for 
overlap

• Minimizing memory usage
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Job Startup Performance
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Challenge: Avoid All-to-all Connectivity
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Connection setup phase takes 85% of 
initialization time with 4K processes

Applications rarely require 
full all-to-all connectivity



Network Based Computing Laboratory

On-demand Connection Management
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Results - On-demand Connections
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Challenge: Exploit High-performance 
Interconnects in PMI

• Used for network address 
exchange, heterogeneity 
detection, etc.
• Used by major parallel 

programming frameworks

• Uses TCP/IP for transport
• Not efficient for moving large 

amount of data 
• Required to bootstrap high-

performance interconnects
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PMIX_Ring: A Scalable Alternative
§ Exchange data with only the 

left and right neighbors over 
TCP

§ Exchange bulk of the data over 
High-speed interconnect (e.g. 
InfiniBand, OmniPath)
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int PMIX_Ring(
char value[],
char left[],
char right[], 

…)
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Results - PMIX_Ring

SC '16 10

33% improvement in MPI_Init Total execution time – 20% better
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Challenge: Exploit Overlap in Application 
Initialization
• PMI operations are progressed by 

the process manager

• MPI/PGAS library is not involved

• Can be overlapped with other 
initialization tasks / application 
computation

• Put+Fence+Get combined into a 
single function - Allgather

int PMIX_KVS_Ifence(
PMIX_Request *request)

int PMIX_Iallgather(
const char value[],
char buffer[], 
PMIX_Request *request)

int PMIX_Wait(
PMIX_Request request)
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Results - Non-blocking PMI Collectives
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Near-constant MPI_Init at any scale Allgather is 38% faster than Fence
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Challenge: Minimize Memory Footprint

• Address table and similar information 
is stored in the PMI Key-value store 
(KVS)
• All processes in the node duplicate 

the KVS

• PPN redundant copies per node
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Shared Memory based PMI
• Process manager creates and 

populates shared memory 
region

• MPI processes directly read 
from shared memory

• Dual shared memory region 
based hash-table design for 
performance and memory 
efficiency
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Shared Memory based PMI
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PMI Gets are 1000x faster Memory footprint reduced by O(PPN)
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Summary
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• Near constant MPI/OpenSHMEM initialization at any process count
• 10x and 30x improvement in startup time of MPI and OpenSHMEM

with 16,384 processes (1,024 nodes)
• O(PPN) reduction in PMI memory footprint
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Availability and Impact
• Tested at large-scale on Stampede and LLNL clusters

• All designs available as part of MVAPICH2 / MVAPICH2-X
• MVAPICH powers Sunway TaihuLight - the #1 SuperComputer in the world!
• 13th, 241,108-core (Pleiades) at NASA
• 17th, 462,462-core (Stampede) at TACC

• Can be easily adopted by other MPI libraries and Resource Managers
• Design of PMIX_Ring contributed to SLURM 15

• Other enhancements available as patches from MVAPICH2 website
• Ongoing discussion to include them in future SLURM releases
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Thank You!

http://go.osu.edu/mvapich-startup
http://mvapich.cse.ohio-state.edu/

chakrabs@cse.ohio-state.edu
panda@cse.ohio-state.edu
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