
Network Based Computing Laboratory

Job Startup at Exascale:
Challenges and Solutions

Sourav Chakraborty
Advisor: Dhabaleswar K (DK) Panda

The Ohio State University

http://nowlab.cse.ohio-state.edu/

Network Based Computing Laboratory

Current Trends in HPC
• Tremendous increase in system and

job sizes

• Interconnects like InfiniBand and
OmniPath is dominant

• Dense many-core systems like KNL
are more common

• Hybrid MPI+PGAS models becoming
popular

SC '16 2

Fast and scalable job-startup is essential!

Network Based Computing Laboratory

Why is Job Startup Important?

Development	and	debugging

Regression	/	Acceptance	testing

Checkpoint	- Restart

SC '16 3

Network Based Computing Laboratory

Towards Exascale: Challenges to Address

• Dynamic allocation of
resources

• Leveraging high-performance
interconnects

• Exploiting opportunities for
overlap

• Minimizing memory usage

SC '16 4

Job Startup Performance

M
em

or
y

O
ve

rh
ea

d

State of the art

Towards Exascale

Network Based Computing Laboratory

Challenge: Avoid All-to-all Connectivity

SC '16 5

0

5

10

15

20

25

30

35

32 64 128 256 512 1K 2K 4K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Connection Setup

PMI Exchange

Memory
Registration

Application Processes Average Peers

BT
64 8.7

1024 10.6

EP
64 3.0

1024 5.0

MG
64 9.5

1024 11.9

SP
64 8.8

1024 10.7

2D Heat
64 5.3

1024 5.4

Connection setup phase takes 85% of
initialization time with 4K processes

Applications rarely require
full all-to-all connectivity

Network Based Computing Laboratory

On-demand Connection Management

SC '16 6

Main
Thread

Main
Thread

Connection
Manager Thread

Connection
Manager Thread

Process 1 Process 2

Put/Get
(P2)

Create QP
QP→Init
Enqueue Send

Create QP
QP→Init
QP→RTR

QP→RTR
QP→RTS

Connection
Established
Dequeue Send

Connect Request
(LID, QPN)

(address, size, rkey)

Connect Reply
(LID, QPN)

(address, size, rkey)

QP→RTS
Connection
Established

Put/Get
(P2)

Network Based Computing Laboratory

Results - On-demand Connections

SC '16 7

0

20

40

60

80

100

16 32 64 128256512 1K 2K 4K 8K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Performance of OpenSHMEM
Initialization and Hello World

Hello World - Static

start_pes - Static

Hello World - On-demand

start_pes - On-demand

0

2

4

6

8

BT EP MG SP

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

Benchmark

Execution time of OpenSHMEM
NAS Parallel Benchmarks

Static

On-demand

Initialization – 29.6 times faster Total execution time – 35% better

Network Based Computing Laboratory

Challenge: Exploit High-performance
Interconnects in PMI

• Used for network address
exchange, heterogeneity
detection, etc.
• Used by major parallel

programming frameworks

• Uses TCP/IP for transport
• Not efficient for moving large

amount of data
• Required to bootstrap high-

performance interconnects

SC '16 8

0

0.5

1

1.5

2

2.5

32 64 128 256 512 1K 2K 4K 8K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Breakdown of MPI_Init in MVAPICH2

PMI Exchanges

Shared Memory

Other

PMI = Process Management Interface

Network Based Computing Laboratory

PMIX_Ring: A Scalable Alternative
§ Exchange data with only the

left and right neighbors over
TCP

§ Exchange bulk of the data over
High-speed interconnect (e.g.
InfiniBand, OmniPath)

SC '16 9

int PMIX_Ring(
char value[],
char left[],
char right[],

…)

0
1
2
3
4
5
6
7

16 64 256 1k 4k 16k

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

Number of Processes

Comparison of PMI operations

Fence

Put

Gets

Ring

PMIX_Ring is more scalable

Network Based Computing Laboratory

Results - PMIX_Ring

SC '16 10

33% improvement in MPI_Init Total execution time – 20% better

0

1

2

3

4

5

6

7

16 32 64 128 256 512 1K 2K 4K 8K

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

Number of Processes

Performance of MPI_Init and
Hello World with PMIX_Ring

Hello World (Fence)

Hello World (Ring)

MPI_Init (Fence)

MPI_Init (proposed)

0

1

2

3

4

5

6

7

EP MG CG FT BT SP

Ti
m

e
Ta

ke
n

(s
ec

on
ds

)

Benchmark

NAS Benchmarks with
1K Processes, Class B Data

Fence

Ring

Network Based Computing Laboratory

Challenge: Exploit Overlap in Application
Initialization
• PMI operations are progressed by

the process manager

• MPI/PGAS library is not involved

• Can be overlapped with other
initialization tasks / application
computation

• Put+Fence+Get combined into a
single function - Allgather

int PMIX_KVS_Ifence(
PMIX_Request *request)

int PMIX_Iallgather(
const char value[],
char buffer[],
PMIX_Request *request)

int PMIX_Wait(
PMIX_Request request)

SC '16 11

Network Based Computing Laboratory

Results - Non-blocking PMI Collectives

SC '16 12

Near-constant MPI_Init at any scale Allgather is 38% faster than Fence

0.4

0.8

1.2

1.6

2

64 256 1K 4K 16K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Performance of MPI_Init

Fence

Ifence

Allgather

Iallgather

0

0.4

0.8

1.2

1.6

64 256 1K 4K 16K

Ti
m

e
Ta

ke
n

(S
ec

on
ds

)

Number of Processes

Comparison of Fence and Allgather

PMI2_KVS_Fence

PMIX_Allgather

Network Based Computing Laboratory

Challenge: Minimize Memory Footprint

• Address table and similar information
is stored in the PMI Key-value store
(KVS)
• All processes in the node duplicate

the KVS

• PPN redundant copies per node

SC '16 13

Process 1

PMI
KVS

Process 2

PMI
KVS

Process N

PMI
KVS

Process Manager

PMI Key-Value Store (KVS)

PPN = Number of Processes per Node

Network Based Computing Laboratory

Shared Memory based PMI
• Process manager creates and

populates shared memory
region

• MPI processes directly read
from shared memory

• Dual shared memory region
based hash-table design for
performance and memory
efficiency

SC '16 14

Empty Head Tail Key Value Next

Hash Table (Table)

Key Value Store (KVS)

Top
21

3

Network Based Computing Laboratory

Shared Memory based PMI

SC '16 15

PMI Gets are 1000x faster Memory footprint reduced by O(PPN)

0

50

100

150

200

250

300

1 2 4 8 16 32

Ti
m

e
Ta

ke
n

(m
ill

is
ec

on
ds

)

Number of Processes

Time Taken by one PMI_Get

Default

Shmem

1

10

100

1000

10000

32K 64K 128K 256K 512K 1M

M
em

or
y

U
sa

ge
 p

er
 N

od
e

(M
B)

Number of Processes

PMI Memory Usage
Fence - Default
Allgather - Default
Fence - Shmem
Allgather - Shmem

Network Based Computing Laboratory

Summary

SC '16 16

P M

O

Job Startup Performance

M
em

or
y

Re
qu

ire
d

to
 S

to
re

En

dp
oi

nt
 In

fo
rm

at
io

n

a b c d

eP

M

PGAS – State of the art

MPI – State of the art

O PGAS/MPI – Optimized

PMIX_Ring

PMIX_Ibarrier

PMIX_Iallgather

Shmem based PMI

b

c

d

e

a On-demand Connection

• Near constant MPI/OpenSHMEM initialization at any process count
• 10x and 30x improvement in startup time of MPI and OpenSHMEM

with 16,384 processes (1,024 nodes)
• O(PPN) reduction in PMI memory footprint

Network Based Computing Laboratory

Availability and Impact
• Tested at large-scale on Stampede and LLNL clusters

• All designs available as part of MVAPICH2 / MVAPICH2-X
• MVAPICH powers Sunway TaihuLight - the #1 SuperComputer in the world!
• 13th, 241,108-core (Pleiades) at NASA
• 17th, 462,462-core (Stampede) at TACC

• Can be easily adopted by other MPI libraries and Resource Managers
• Design of PMIX_Ring contributed to SLURM 15

• Other enhancements available as patches from MVAPICH2 website
• Ongoing discussion to include them in future SLURM releases

SC '16 17

Network Based Computing Laboratory

Thank You!

http://go.osu.edu/mvapich-startup
http://mvapich.cse.ohio-state.edu/

chakrabs@cse.ohio-state.edu
panda@cse.ohio-state.edu

SC '16 18

