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Introduction

* Big Data has become one of the most important
elements in business analytics

* The rate of information growth appears to be exceeding
Moore’s Law

* Every day ~2.5 quintillion (2.5x10*8) bytes of data are
created

e Big Data and High Performance Computing (HPC) are
converging to meet large scale data processing
challenges

* According to IDC, 67% of HPC centers are running High
Performance Data Analysis (HPDA) workloads

* The revenues of these workloads are expected to grow m

exponentially —
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Big Data Processing with Hadoop

e The open-source implementation of User Abblications
MapReduce programming model for Big Data PP

Analytics ’

e  Major components MapReduce
O HDFS
O MapReduce i i i
HDFS
e Underlying Hadoop Distributed File System Hadoop Common (RPC)
(HDFS) can be used by both MapReduce and
end applications

Hadoop Framework
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Drivers of Modern HPC Cluster Architectures

Multi-core Processors

High Performance Interconnects -
InfiniBand
<lusec latency, 100Gbps Bandwidth>

e Multi-core/many-core technologies
e Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)

e Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), Parallel File Systems
e Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)

-,__a—‘ T

Accelerators / Coprocessors
high compute density, high
performance/watt
>1 TFlop DP on a chip

*Stampede
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SSD, NVMe-SSD, NVRAM

Gordon



NETWORK-BASED
COMPUTING

Non-Volatile M Trend
K : ] 10¢
g e
to “feed” the CPU
108
e BN el Coioo)l KT besleed BECS | G
. @ 104 cru
0 z
. .0 ’ T HDDs becoming DRAM
mal Mamary W L] r E 102 Chﬂagtlil:t not
- R 5 "
) ! ’ "1 | 2 108 HDD
T £ ‘
toroge - :- - Gap = widening
d =
TRPSSRES Automotv 10% 0 10° 10! 102 10° 104
http://www.slideshare.net/Yole_Developpement/yole-emerging-nonvolatile- Cost ($/GB)
memory-2016-report-by-yole-developpement?next_slideshow=2

http://www.chipdesignmag.com/bursky/?paged=2

e NVM devices offer DRAM-like performance characteristics with persistence; suitable for data
processing middleware
e Number of NVM applications are growing rapidly because of the byte-addressability and
persistence features
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NVM-aware HDFS
e Our previous work, NVFS Applications and Benchmarks
provides NVRAM-based v di . : » HB
. adoop par ase
designs for HDFS MapReduce ? ?
e Exploits byte-addressability of * Co-Design *
NVM for communication and (Cost-Effectiveness, Use-case)
I/O in HDFS
* MapReduce, Spark, HBase can NVM and RDMA-aware HD:a_tSahﬁyFS)
obtain better performance for — Writer/Reader
utilizing NVFS as input-output DFSClient Replicator | NVFS- | NVFS-
BlklO MemiQ |
storage

o N.S. Islam, M. W. Rahman, X. Lu, D. K. Panda,
High Performance Design for HDFS with Byte-
Addressability of NVM and RDMA, 24th
International Conference on Supercomputing
(ICS'16), Jun 2016.

RDMA
RDMA I I

Receler || 539 (53D (S3D)
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MapReduce on HPC Systems

_— Map Local Reduce L
_ Distributed Storage Processes Storage Processes Distributed Storage
Q
©
Y o
2
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x O —= —i= — ==
o o, o
29 - @
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m T
4 : . . 0000
Bl Our previous works provide designs for -
. LLLLLL ®
T2 MapReduce with these HPC resources
e Non-Volatile
Memory
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Problem Statement

e What are the possible choices for using NVRAM in the MapReduce
execution pipeline?

e How can MapReduce execution frameworks take advantage of NVRAM in
such use cases?

e Can MapReduce benchmarks and applications be benefitted through the
usage of NVRAM in terms of performance and scalability?
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Key Contributions

e Proposed a novel NVRAM-assisted Map Output Spill Approach

e Applied our approach on top offRDMA-based Hadoop MapReduce |to keep
both map and reduce phase enhancements

e Proposed approach can significantly out-perform the current approaches
proven by different sets of workloads
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RDMA-enhanced MapReduce

e RDMA-based MapReduce
— RDMA-based shuffle engine

— Pre-fetching and caching of intermediate data

— M. W.Rahman, N.S. Islam, X. Lu, J. Jose, H. Subramoni, H. Wang, and D. K. Panda, High-Performance RDMA-based Design of
Hadoop MapReduce over InfiniBand, HPDIC, in conjunction with IPDPS, 2013

e Hybrid Overlapping among Phases (HOMR)
— Overlapping among map, shuffle, and merge phases as well as shuffle, merge, and reduce phases

— Advanced shuffle algorithms with dynamic adjustments in shuffle volume

— M. W.Rahman, X. Lu, N. S. Islam, and D. K. Panda, HOMR: A Hybrid Approach to Exploit Maximum Overlapping in MapReduce
over High Performance Interconnects, ICS, 2014

These designs are incorporated into the public
release of “RDMA for Apache Hadoop” package
under HiBD project
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The High-Performance Big Data (HiBD) Project

e RDMA for Apache Spark .... H = B D

e RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x) .. I
—  Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions High-Performance

e RDMA for Apache HBase Big Data

e RDMA for Memcached (RDMA-Memcached) gased C

e RDMA for Apache Hadoop 1.x (RDMA-Hadoop) O& O%

e OSU HiBD-Benchmarks (OHB) § ¢ .
—  HDFS, Memcached, and HBase Micro-benchmarks \Z\ a?

. http://hibd.cse.ohio-state.edu

e  Users Base: 195 organizations from 26 countries Laboratory
e  More than 18,600 downloads from the project site |
e RDMA for Impala (upcoming)
Available for InfiniBand and RoCE THE OHIO STATE
UNIVERSITY
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RDMA for Apache Hadoop 2.x

e High-Performance Design of Hadoop — o o m— m m— mmm mm mm mm mm mmm mmm m— m—
RDMA-enhanced MapReduce

Intermediate Data Dir

over RDMA-enabled Interconnects

—  High performance RDMA-enhanced

design with native InfiniBand and RoCE

| RDMA-
support at the verbs-level for HDFS, RDMA-enhanced HDES enl:ll:nged
MapReduce, and RPC components Burst Buffer
o (Memcached)
—  Enhanced HDFS with in-memory and with Lustre
h (HHH-L-BB)
eterogeneous storage

—  High performance design of MapReduce
over Lustre
—  Plugin-based architecture supporting RDMA-based designs for Apache Hadoop, HDP, and CDH

e  Currentrelease: 1.1.0

— Based on Apache Hadoop 2.7.3

—  Compliant with Apache Hadoop 2.7.3, HDP 2.5.0.3, CDH 5.8.2 APIs and applications
—  http://hibd.cse.ohio-state.edu
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Optimization Opportunities

e Utilizing NVMs as PCle SSD devices would be straight-forward
— Configuring the Hadoop local dirs with the NVMe SSD locations

— No design changes required 400
. 350
e Performance improvement
potential with such
configuration changes is

300 1
250 1
200 1
150

Execution Time (s)

not high e
— Only improves by 16% for 50
RAMDisk over HDD as 0-

int d t d t t HDD SSD RAMDisk
Intermediate data storage Intermediate Data Storage

e Utilizing NVMs as NVRAM can be crucial

PDSW-DISCS 2016
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HOMR Design and Execution Flow
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Input Files

Opportunities exist to
improve the
performance with
NVRAM

Intermediate Data

All Operations are In-
Memory

Output Files
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Profiling Map Phase

e Map execution performance can be estimated from five
different stages

+ tmaﬁl_ tcauect + ts;_pi!! + tmerge

. NN

Reading input data Applying Serialization and || Spilling key-value
from file system map() function Partitioning pairs to files

Merge the spill files
and write the data to
intermediate storage

\ J

|

Involves disk operations on
intermediate data storage
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Profiling Map Phase

B Sort M TeraSort

Read + Map + Collect Spill + Merge

e Profiled 20GB Sort and TeraSort experiments on 8 nodes with default Hadoop
e Averaged over 3 executions

e Spill + Merge takes 1.71x more time compared to Read + Map + Collect for

Sort; for TeraSort, it takes 3.75x more time
QOHIO
SIATE
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NVRAM-Assisted Map Spilling

m_‘ Reduice fask

. ©

Spill -

N pi o+ R In N

(d Minimizes the disk operations in Spill phase
d Final merged output is still written to intermediate data storage
for maintaining similar fault-tolerance

1|

Spill

‘ Read Map
Merge

Int
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Experimental Setup

e We have used SDSC-Comet for our evaluation
— 9 nodes
— 12-core Intel Xeon E5-2680 v3 (Haswell) processors
— 128 GB DDR4 DRAM
— 320 GB local SATA SSD
— 56 Gbps FDR InfiniBand

e Software and Libraries

— Hadoop-2.6.0, JDK 1.7
— RDMA-based Apache Hadoop 0.9.7
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Configurations and Notations

e Hadoop configurations used throughout the experiments

Parameter Value

HDFS Block Size 256 MB

HDFS Data Directory <SSD Location>
Intermediate Data Directory <SSD Location>
YARN Concurrent Containers 12

e Notations used in the graphs

Apache Hadoop MR
RDMA Hadoop RMR
RDMA Hadoop with NVRAM-Assisted Map Spill (this paper) RMR-NVM
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Simulating NVRAM performance

e Because of hardware limitation, we perform simulation to predict NVRAM
performance using DRAM

e Assumption: NVRAM write is 10x slower compared to DRAM write;

NVRAM read performs similar to DRAM Read

— NVRAM. http://www.enterprisetech.com/2014/08/06/flashtec-nvram-15-million-iops-sub-
microsecondlatency

— S. Pelley, T. F. Wenisch, B. T. Gold, and B. Bridge. Storage Management in the NVRAM Era. Proc.
VLDB Endow., 2013.

e We simulate NVRAM performance by adding a delay (6) after DRAM write
operations

e We utilize System.nanoTime () foradding a sleep to simulate 6
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Benefits in Map Phase

35 R 14 = MR
3 B RMR 12 ® RMR
2.5 H RMR-NVM 10 B RMR-NVM
w2 z 8
.qé 1.5+ .Gg-’ 6
(= 14 = 4
0.5 2 -
0- 0 -
Sort TeraSort Sort TeraSort
Benchmarks Benchmarks
Read + Map + Collect Spill + Merge

e Read + Map + Collect performs similarly across different MR designs

e Spill + Merge performs significantly better compared to both MR and RMR

e 20 GB Sort and TeraSort experiments on 8 nodes; RMR-NVM Map phase performs at
least 2x better compared to RMR
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Benefits in Map Phase (Contd.)

2200
2000 = =

1800 /_,/—:’

1600

1400 —_—

1200 -

1000 12 —
800 N
600
400 —

200

Spill Cost (ms)

Map tasks
e Profiling Map Spill Cost for different MR frameworks

e Sort experiment with 96 maps on 8 nodes
e Sorted spill costs for all maps; averaged over 3 iterations to minimize variation

e Average benefit of 2.39x is achieved across all maps
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Comparison with Sort and TeraSort

| | I | T 500 ]
450
400
350
300
250
200
150
100
50
0

' Reduce
i

"I Reduce 51%

| Job Execution Time (sec)

20 GB 40 GB 60 GB 20 GB 40 GB 60 GB
RMR-NVM achieves 2.37x benefit for e RMR-NVM achieves 2.48x benefit for
Map phase compared to RMR and MR-  Map phase compared to RMR and MR-
IPolIB; overall benefit 55% compared to  IPolIB; overall benefit 51% compared to
MR-IPolB, 28% compared to RMR MR-IPolB, 31% compared to RMR
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e We evaluate different 1200
HiBench workloads with Huge 1000 e m MRIPos .
data sets on 8 nodes 8 o M
e Performance benefits for E SO |
Shuffle-intensive workloads § 70 U R 1 — -
compared to MR-IPolB: 3
— Sort: 42% (25 GB) SR T | | )
— TeraSort: 39% (32 GB) = ol m. B |
— PageRank: 21% (5 million pages) m
e Other workloads: 0 Sort  TeraSort PageRank DfslOe WordCount KMeans
— WordCount: 18% (25 GB) Benchmarks (Data Set)
— KMeans: 11% (100 million
samples)
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Evaluation of PUMA Workloads

e \We evaluate different PUMA  1.400 |
workloads on 8 nodes with 1200
30GB data size

e Performance benefits for
Shuffle-intensive workloads
compared to MR-IPoIB :

— AdjList: 39%
— SelfJoin: 58%
— RankedlInvindex: 39% 200 --

e (QOther workloads:
— SeqCount: 32%
— Invindex: 18%

it
=
=
[

800 —--

600 [--

400 |---

Job Execution Time (sec)

AdjList  Selfloin  SeqCount InvIndex RankInvIndex
Benchmarks (Data Size)
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Conclusion and Future Work

e We propose an enhanced design of MapReduce with NVRAM

e NVRAM-assisted Map Spilling provides significant performance benefits
(2.73x) in Map phase compared to previous designs

e Qverall, it achieves 55% performance benefits for Sort, 58% for SelfJoin

e This design will be made available in the public release of “RDMA for Apache
Hadoop” package under HiBD (http://hibd.cse.ohio-state.edu) project

e In the future, we plan to extend other MapReduce execution frameworks
(e.g. Spark, Tez) by leveraging similar design choices with NVRAM
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Thank You!

{rahmanmd, islamn, luxi, panda}@cse.ohio-state.edu
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High Performance Big Data
http://hibd.cse.ohio-state.edu/

Network-Based Computing Laboratory

http://nowlab.cse.ohio-state.edu/
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