

Performance Study of CUDA-Aware MPI libraries for GPU-enabled OpenPOWER Systems

Kawthar Shafie Khorassani, Ching-Hsiang Chu, Hari Subramoni, and Dhabaleswar K (DK) Panda

{shafiekhorassani.1, chu.368}@osu.edu, {subramon, panda}@cse.ohio-state.edu

Network-based Computing Laboratory

Department of Computer Science and Engineering

The Ohio State University

Drivers of Modern HPC Cluster Architectures

High Performance Interconnects InfiniBand
<1usec latency, 200Gbps Bandwidth>

Accelerators / Coprocessors
high compute density, high
performance/watt
>1 TFlop DP on a chip

SSD, NVMe-SSD, NVRAM

- Multi-core Processors
- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
- Solid State Drives (SSDs), Non-Volatile Random-Access Memory (NVRAM), NVMe-SSD
- Accelerators (NVIDIA GPGPUs and Intel Xeon Phi)
- Available on HPC Clouds, e.g., Amazon EC2, NSF Chameleon, Microsoft Azure, etc.

Sierra

Sunway TaihuLight

K - Computer

Summit

Hardware Configuration – OpenPOWER GPU-Enabled Systems

Summit - #1 Supercomputer

- **NVLink:** Between CPU and GPU and between GPUs
- **HBM2** (High Bandwidth Memory): Memory interface used in GPUs
- **IB** (InfiniBand): Between multiple OpenPOWER nodes X-Bus: Between two IBM POWER9 processes

Lassen - #10 Supercomputer

- **PCIe** (Peripheral Component Interconnect Express): Between CPU to Mellanox Socket-Direct InfiniBand **EDR HCA**

Message Passing Interface (MPI)

- The defacto standard programming model in HPC
- Used in Parallel Applications to enable communication between processes
- MPI used to execute applications at scale
- CUDA-Aware MPI's for optimizing data movement on GPU clusters
 - Point-to-point Communication
 - Intra-node (GPU-GPU, GPU-Host, and Host-GPU)
 - Inter-node (GPU-GPU, GPU-Host, and Host-GPU)
 - Collective Communication
 - One-Sided Communication

CUDA-aware MPI

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

At Sender:

MPI Send(s devbuf, size, ...);

At Receiver:

MPI Recv(r devbuf, size, ...);

High Performance and High Productivity

CUDA-aware MPI - Communication

- MPI communication from NVIDIA GPU device memory
- High performance Remote Direct Memory Access (RDMA)-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple
 GPU adapters/node

Challenges

Advent of GPU-enabled OpenPOWER systems introduces new challenges:

- Variety of interconnects
 - → Which interconnects dominate performance?
- Lack of comprehensive evaluation of CUDA-aware MPI libraries
 - → Do MPI libraries fully leverage the interconnects?
- Optimize communication libraries
 - → How can MPI libraries be optimized further?
- Additional factors to consider when adjusting end applications
 - → What MPI primitives should be used to maximize performance gain?

Goals of Benchmarking

Can the state-of-the-art MPI libraries fully leverage the interconnects on GPU-enabled OpenPOWER architectures?

- Evaluate CUDA-aware MPI libraries on various systems
- Determine achievable performance of MPI libraries
- Derive insights into expected performance of MPI libraries
- Evaluate bottlenecks of various configurations
- Compare performance of various MPI libraries

Native Performance of Interconnects

- NVLink between CPU and GPU
 - BandwidthTest from NVIDIA CUDA sample: Multiple cudaMemcpyAsync back-to-back between system & GPU memory
 - https://github.com/NVIDIA/cuda-samples
- GPU HBM2 and NVLink between GPUs
 - simpleIPC test from NVIDIA CUDA sample: CPU processes transfer data within a GPU and between GPUs
 → 2-lane NVLink → X-Bus
 → 8-lane PCle Gen4
 → Infiniband EDR
- X-Bus
 - STREAM benchmark
 - https://www.cs.virginia.edu/stream/
- InfiniBand
 - InfiniBand verbs performance test (ib_read_bw)

Native Performance of Interconnects

Theoretical and achievable peak bandwidth of interconnects on Lassen and Summit OpenPOWER Systems

		Lassen		Summit			
		3-lane NVLink2	3-lane NVLink2	2-lane NVLink2	2-lane NVLink2		InfiniBand
	GPU HBM2	CPU-GPU	GPU-GPU	CPU-GPU	GPU-GPU	X-Bus	EDR x 2
Theoretical Peak							
Bandwidth	900 GB/s	75 GB/s	75 GB/s	50 GB/s	50 GB/s	64 GB/s	12.5 GB/s
(Uni-directional)							
Achievable Peak							
Bandwidth	768.91 GB/s	68.78 GB/s	70.56 GB/s	45.9 GB/s	47 GB/s	58.01 GB/s	11.82 GB/s
(Uni-directional)							
Fraction of Peak	85.43%	91.70%	91.81%	91.80%	94%	90.64%	94.56%

OSU Micro-Benchmarks (OMB v5.6.1)

- Benchmark to evaluate performance of traditional and CUDA-Aware MPI Libraries (point-to-point, multi-pair, and collective communication)
 - http://mvapich.cse.ohio-state.edu/benchmarks/
- Point-to-point benchmarks used:
 - Latency
 - Uni-directional Bandwidth
 - Bi-directional Bandwidth
- Communication Patterns:
 - Inter-Node, Intra-Node
 - GPU to GPU, Host to GPU

CUDA-aware MPI Libraries

IBM Spectrum-MPI 10.3.0.01

- Default CUDA-aware MPI library deployed on many OpenPOWER systems
- https://www.ibm.com

OpenMPI 4.0.1 + UCX 1.6

- Unified Communication X (UCX): Collaboration between industry, laboratories, and academia
- https://www.open-mpi.org

MVAPICH2-GDR 2.3.2

- Based on standard MVAPICH2 and incorporates GPUDirect RDMA technology
- Advanced optimizations for GPU communication
- http://mvapich.cse.ohio-state.edu

Hardware Configuration – Lassen OpenPOWER System

Communication through: **NVLink between GPUs**

- Theoretical Peak Bandwidth of 3-lane NVLink 75 GB/s
- Map MPI processes to two GPUs w/ NVLink connection (CUDA_VISIBLE_DEVICES=0,1)

NVLink between GPUs (Lassen) - Bandwidth

- Achievable Peak Bandwidth of 3-lane NVLink 70.56 GB/s
- All 3 libraries deliver ~95% of achievable bandwidth

NVLink between GPUs (Lassen) - Latency

- MVAPICH2-GDR ~4x lower than Spectrum-MPI & ~5x lower than OpenMPI up to 4KB
- OpenMPI increases in latency from 4KB to 256KB
 - Possibly an issue with setting the thresholds for selecting communication protocols

Hardware Configuration – Summit OpenPOWER System

Communication through: **NVLink between GPUs**

- Theoretical Peak Bandwidth of 2-lane NVLink 50 GB/s
- Map MPI processes to two GPUs w/ NVLink connection (CUDA_VISIBLE_DEVICES=0,1)

NVLink between GPUs (Summit) - Bandwidth

Summit **2-Lane** NVLink2 Peak Bandwidth differs from 3-Lane NVLink2 bandwidth:

- Achievable Peak Bandwidth of 2-lane NVLink 47 GB/s
 - MVAPICH2-GDR & Spectrum-MPI Peak Bandwidth: ~44.2GB/s
 - OpenMPI Peak Bandwidth: ~44.4GB/s

NV Link bet vee GP Js (Summit) - Latency

- Similar trends in NVLink GPU-GPU latency on Summit as the Lassen System
- MVAPICH2-GDR outperforms Spectrum-MPI & OpenMPI
- OpenMPI has performance degradation in latency for 4KB to 256KB
 - setting the thresholds for selecting communication protocols

Hardware Configuration – Lassen OpenPOWER System

Communication through: **HBM2**

- Theoretical Peak Bandwidth 900 GB/s
- Map two processes to the same GPU (CUDA_VISIBLE_DEVICES=0)

GPU HBM2 (Lassen) - Bandwidth

- Achievable Peak Bandwidth 768.91 GB/s
 - MPI libraries achieve about half of the peak bandwidth for HBM2
 - Limitation of GPUs MPS feature when sharing single GPU
- OpenMPI not using IPC for intra-node, intra-GPU communication

GPU HBM2 (Lassen) - Latency

- Multi-Process Service (MPS) Capabilities in NVIDIA GPUs
- MVAPICH2-GDR ~20x less than other libraries up to 4KB
- OpenMPI linear trend in latency after 4KB
 - OpenMPI does not use IPC for intra-node, intra-GPU communication

Hardware Configuration – Lassen OpenPOWER System

Communication through: NVLink between CPU and GPU

- Theoretical Peak Bandwidth 75 GB/s
- Map a process to a CPU to communicate with a process mapped to a GPU

NVLink between CPU and GPU (Lassen) - Bandwidth

- Achievable Peak Bandwidth 68.78 GB/s
- Bounded by 8-lane PCIe Gen4 and IB HCA

NVLink between CPU and GPU (Lassen) - Latency

- Exploit both CPU and GPU to maximize parallelism
- Place MPI processes on the same NUMA node
- MVAPICH2-GDR & OpenMPI similar small message latency up to 2KB
 - Spectrum-MPI ~10x higher

Hardware Configuration – Lassen OpenPOWER System

Communication through: **NVLink and X-Bus**

- Theoretical Peak Bandwidth 64 GB/s
- Map two processes to different NUMA nodes (CUDA_VISIBLE_DEVICES=0,2)

NVLink and X-Bus (Lassen) - Bandwidth

- Achievable Peak Bandwidth 58.01 GB/s
 - Peak bandwidth MPI libraries can achieve is only around 80% of X-Bus bandwidth
- OpenMPI yields ~76% achievable bandwidth
- Spectrum-MPI and MVAPICH2-GDR yields ~95% achievable bandwidth

NVLink and X-Bus (Lassen) - Latency

- X-Bus dominates the performance
- OpenMPI degradation between 4KB and 256KB
 - setting the thresholds for selecting communication protocols
- MVAPICH2-GDR ~4x lower than Spectrum-MPI & ~5x lower than OpenMPI up to 4K

Hardware Configuration – Lassen OpenPOWER System

Communication through: InfiniBand Socket-Direct Dual Port EDR Network

- Theoretical Peak Bandwidth 25 GB/s
- MPI processes launched on different nodes

InfiniBand Network (Lassen) - Bandwidth

- Achievable Peak Bandwidth 23.64 GB/s
- Multi-rail support pertinent for peak performance

InfiniBand Network (Lassen) - Latency

- MVAPICH2-GDR & OpenMPI in similar range
- SpectrumMPI ~6us small message latency compared to ~4us for OpenMPI & MVAPICH2-GDR
- Possible change in communication protocol for SpectrumMPI degradation after 256KB

Hardware Configuration – Summit OpenPOWER System

Communication through: InfiniBand Socket-Direct Dual Port EDR Network

- Theoretical Peak Bandwidth 25 GB/s
- MPI processes launched on different nodes

InfiniBand Network (Summit) - Bandwidth

Achievable Peak Bandwidth – 23.64 GB/s

InfiniBand Network (Summit) - Latency

- Similar Performance on Summit system to Lassen System
- SpectrumMPI ~6us small message latency compared to ~4us for OpenMPI & MVAPICH2-GDR

Summary - Performance of Interconnects

Achievable peak bandwidth of MPI libraries and fraction of peak over Interconnects on the Lassen GPU-enabled OpenPOWER System

- MPI Libraries perform similarly for NVLink GPU-GPU communications
- MVAPICH2-GDR achieves highest performance through HBM2
- MVAPICH2-GDR & SpectrumMPI achieve ~99% peak bandwidth for IB EDR

	GPU HBM2	3-lane NVLink2 CPU-GPU	3-lane NVLink2 GPU-GPU	X-Bus	InfiniBand EDR x 2
SpectrumMPI	329 GB/s	21.74 GB/s	67.14 GB/s	39.16 GB/s	23.45 GB/s
	36.55%	31.61%	95.20%	94.60%	99.20%
OpenMPI	0.457 GB/s	23.63 GB/s	67.22 GB/s	31.77 GB/s	22.55 GB/s
	0.05%	34.35%	95.40%	76.73%	95.40%
MVAPICH2-GDR	390.88 GB/s	26.84 GB/s	67.15 GB/s	39.28 GB/s	23.56 GB/s
	43.43%	39.02%	95.30%	94.97%	99.70%

Conclusion

Comprehensive performance evaluation of CUDA-aware MPI libraries in terms of latency, bandwidth, and bi-bandwidth on GPU-enabled OpenPOWER systems

- Communication through NVLink between two GPUs on same socket
 - MVAPICH2-GDR, Spectrum-MPI, and OpenMPI + UCX deliver ~95% achievable bandwidth
- Communication through IB Network achievable bandwidth:
 - MVAPICH2-GDR ~99%, Spectrum-MPI ~99%, and Open-MPI + UCX ~95%

Thank You!

Network-Based Computing Laboratory http://nowlab.cse.ohio-state.edu/

> Kawthar Shafie Khorassani shafiekhorassani.1@osu.edu

The High-Performance MPI/PGAS Project http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project http://hidl.cse.ohio-state.edu/