
LLNL-PRES-XXXXXX

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

EReinit: Scalable and Efficient Fault-Tolerance 

for Bulk-Synchronous MPI Applications

Sourav Chakraborty1, Ignacio Laguna2, Murali Emani2, Kathryn Mohror2, 
Dhabaleswar K (DK) Panda1, Martin Schulz3, Hari Subramoni1

1 Network Based Computing Laboratory, The Ohio State University
2 Lawrence Livermore National Laboratory, USA

3 Technische Universitaẗ München, Germany

Presented By: Murali Emani, LLNL



LLNL-PRES-xxxxxx

2

Model and simulate real world phenomena▪

Molecular Dynamics (— ddcMD)
Weather Prediction (WRF)—

Cosmology Simulation (Enzo)—

Fluid Dynamics—

Earthquake Simulation—

Highly scalable parallel applications▪

Runs on the largest machines—

Can run for weeks—

Very high probability of encountering faults—

Commonly uses Checkpoint Restart—

Bulk-Synchronous Processing (BSP)

Fault-tolerance for Bulk-Synchronous applications is important!



LLNL-PRES-xxxxxx

3

▪ ULFM (User Level Failure Mitigation)
— An Evaluation of User-Level Failure Mitigation Support in MPI, Bland 

et al, Computing ‘13

▪ Fenix (Local Recovery)
— Exploring Automatic, Online Failure Recovery for Scientific 

Applications at Extreme Scales. Gamel et al, SC ‘14 

▪ Reinit (Global Recovery)
— A Global Exception Fault Tolerance Model for MPI. Laguna et al, 

ExaMPI ‘14

Available Fault-Tolerance (FT) Mechanisms



LLNL-PRES-xxxxxx

4

Is ULFM Suitable for BSP Applications?

Failure Detection▪

Checking return codes is Intrusive and impractical—

Can be automated using PMPI—

Prevents using other tools and libraries—

Errors can be detected far from the operation that —

caused it

Library ▪ State
Application may not control library communicators—

Difficult to shrink and restore communicators—

Algorithmic Requirements▪

Many problems are impossible/impractical to —

recompose to arbitrary number of processes at runtime
Workload of failed process must be — distributed

Bulk synchronous

Everyone must 
rollback

Master-slave

Some may 
rollback



LLNL-PRES-xxxxxx

5

What about Fenix?

Uses ULFM to detect and ▪

propagate failures

Comm_Agree— /Revoke/Shrink

Spawn and rewire replacement ▪

process using MPI_Comm_spawn

Expensive at scale—

• Uses C/R to restore applications 

state

• Inherits the drawbacks from both 

approaches

Breakdown of time taken by different 

steps to initialize MPI in MVAPICH2

Can Reinit enable faster recovery for BSP applications?



LLNL-PRES-xxxxxx

6

The Reinit Interface



LLNL-PRES-xxxxxx

7

Execution Flow in Reinit

Wait for others

Initialize

Process 0

state=New

Finalize

Initialize

Process 1

state=New

Finalize

Initialize

Process 2

state=New

Finalize

Initialize

Process 3

state=New

Restart

X

M
P

I_
R

e
in

it

state=

Restarted

state=

Restarted

state=

Restarted

state=

Added



LLNL-PRES-xxxxxx

8

Fault Tolerance Primitives

Failure Detection1

Failure Propagation / Notification2

Recovery3

A Fault Tolerance mechanism must provide:

Fault Tolerance 

Primitives

Which part of the system should 

provide these functionalities?



LLNL-PRES-xxxxxx

9

Placement of Fault Tolerance Primitives

▪ Key observations:
— MPI libraries have difficulty distinguishing different types of failures and 

recovering from them
— Resource managers have a more global view, offers more flexibility for recovery

▪ EReinit provides a scalable, high-performance FT solution by 
placing Fault-tolerance primitives in the Resource Manager

MPI MPI MPI MPI…

Consensus / Agreements

Process failure detection and propagation •

done via a form of consensus protocols.

Recovery (node• -failure recovery) is hard to 
implement without support of low-level 
layers.

Software Stack in Current Approaches

Middle level

Application

MPI

Resource Manager / RuntimeLow 
level

High level

Manager 
Process

Node 
Process

Node 
Process

Node 
Process

Node 
Process

Node 
Process

Node 
Process

MPI MPI …

Node

• Process failure detected locally by Node 
Process.

• Recovery involves spawning a new process.

Node failure• detected by parent 
Node Process.
Recovery • involves finding a 
replacement node (done by 
manager).

• Failure propagation involves notifying the manager, which then notifies other node 
processes.

Application

MPI

High level

Low 
level

Middle level

Software Stack in Our Approach

Resource Manager / Runtime



LLNL-PRES-xxxxxx

10

Scenario: Process Failure

Local 1. Slurm daemon 
(slurmd) detects process 
failure

SIGCHLD is raised at the parent —

process when child exits

Send failure notification to 2.

Slurm controller (srun)

3. srun broadcasts failure 
notification to slurmds

slurmds4. send predefined 
signal to MPI processes

srun

slurmd
slurmd

slurmdMPI MPI

MPI MPI

…
1

2
3

3 3

4 4

4



LLNL-PRES-xxxxxx

11

Scenario: Node Failure

1. srun detects node failure 
(no response from slurmd)

2. Find replacement node 
(preallocated or on-
demand)

3. Broadcast notification to 
slurmds (includes info 
about replacement node)

4. Launch replacement 
processes

5. Send signal to processes

srun

slurmd
slurmd

slurmd

MPI MPI

…

3

3 3

5 5

1

slurmd

2

MPI MPI

4



LLNL-PRES-xxxxxx

12

Recovering from Failure

▪ Local Resource Manager daemon 
spawns replacement MPI process

▪ New MPI process determines its 
state (ADDED) using environment 
variables

▪ Fetches the connection information 
about other processes using PMI 
(cached at local Slurmd)

▪ Publishes the new connection 
information through PMI

Process Failure

▪ Controller (srun) allocates 
replacement node

▪ Can be pre-allocated, taken from a 
spare pool, or selected on-demand

▪ All slurmds notified of replacement

▪ Surviving slurmds notify local 
processes

▪ Slurmd on replacement node 
spawns new processes

▪ Recovery similar to process failure

Node Failure



LLNL-PRES-xxxxxx

13

MPI Library Reinitialization

Invoke Recovery function 1.

registered during init

PMI barrier is used to ensure 2.

all survivors are ready

(Replacement processes need an —

extra barrier)

Internal state is reset during 3.

Finalize

Initialization is similar to 4.

regular MPI_Init

Long-jump to recovery code

Signal Handler

Failure

Barrier (using PMI)

Finalize (similar to MPI_Finalize)

Initialization (similar to MPI_Init)



LLNL-PRES-xxxxxx

14

Is Multiple Init + Finalize Good Enough?

Reinit▪ allows partial 
finalization and initialization

Avoid redundant and ▪

expensive steps

Close/Reopen HCA—

Dereigster— /Register Memory

Reduces PMI exchange cost▪

Only replacement processes —

broadcast new information

Fetch information cached by —

local slurmd

Breakdown of time taken by different 

steps to initialize MPI in MVAPICH2



LLNL-PRES-xxxxxx

15

1,296 ▪ node cluster (1,118 compute nodes)

▪ 2x Intel Xeon E5-2670 CPU (16 cores per node)

QLogic▪ InfiniBand QDR (40Gbps), Gigabit Ethernet

MVAPICH▪ 2-2.2b, SLURM-15.08.1

GCC▪ 4.9.2, RHEL 6.8, ULFM v1.1, r5433807 

Experimental Setup



LLNL-PRES-xxxxxx

16

Recovery Time: Process Failure

Single Process Failure Multiple Process Failure

• EReinit shows good scalability

• Avoids Shrink/Spawn and reduces PMI exchange cost

• Recovery time at 4,096 processes (256 nodes) is 2.25 seconds

• Gracefully handles multi-process failures



LLNL-PRES-xxxxxx

17

Recovery Time: Node Failure

Single Node Failure
Node failure is simulated by ▪

killing all Application 
processes and slurm
daemons on victim node

EReinit▪ recovers from single 
node failure in 4.41 seconds

3.14 ▪ times faster than basic 
Job Restart

* Publicly available version of ULFM was 

not able to recover from node failure



LLNL-PRES-xxxxxx

18

Recovery Time: Applications

Enzo LULESH

• Baseline: Job Restart + Read Checkpoint from Parallel File System

• EReinit + PVFS benefits from faster recovery time (up to 25% faster)

• EReinit enables loading in-memory checkpoints from surviving nodes

• EReinit + In-Mem significantly reduces the load on PVFS (up to 4x faster)

See paper for more application results!



LLNL-PRES-xxxxxx

19

▪ Global-Restart model can simplify recovery of BSP applications

▪ EReinit proposes a co-design between Resource Manager and 
MPI library to achieve better scalability and performance
— Efficacy of proposed designs demonstrated experimentally

• Fast recovery at large scale
• Scalable handling of multiple process failures

— Enables efficient checkpoint-restart schemes for applications
• In-memory checkpoints can reduce load on parallel file systems

▪ More work in progress on efficient checkpointing iterative 
applications

Summary & Future Work



Questions?


