Big Data Meets HPC: Exploiting HPC Technologies for Accelerating Big Data Processing and Management

SigHPC BigData BoF (SC ‘17)

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Big Data Processing and Deep Learning on Modern Clusters

- Multiple tiers + Workflow
 - Front-end data accessing and serving (Online)
 - Memcached + DB (e.g. MySQL), HBase, etc.
 - Back-end data analytics and deep learning model training (Offline)
 - HDFS, MapReduce, Spark, TensorFlow, BigDL, Caffe, etc.
Increasing Usage of HPC, Big Data and Deep Learning

Convergence of HPC, Big Data, and Deep Learning!!!
Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?
Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?

Resource Manager
(Torque, SLURM, etc.)
Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?
Can We Run Big Data and Deep Learning Jobs on Existing HPC Infrastructure?
How Can HPC Clusters with High-Performance Interconnect and Storage Architectures Benefit Big Data and Deep Learning Applications?

Can the bottlenecks be alleviated with new designs by taking advantage of HPC technologies?

What are the major bottlenecks in current Big Data processing and Deep Learning middleware (e.g. Hadoop, Spark)?

Can RDMA-enabled high-performance interconnects benefit Big Data processing and Deep Learning?

Can HPC Clusters with high-performance storage systems (e.g. SSD, parallel file systems) benefit Big Data and Deep Learning applications?

How much performance benefits can be achieved through enhanced designs?

How to design benchmarks for evaluating the performance of Big Data and Deep Learning middleware on HPC clusters?

Bring HPC, Big Data processing, and Deep Learning into a “convergent trajectory”!
Designing Communication and I/O Libraries for Big Data Systems: Challenges

<table>
<thead>
<tr>
<th>Applications</th>
<th>Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Big Data Middleware</td>
<td>Other Protocols?</td>
</tr>
<tr>
<td>(HDFS, MapReduce, HBase, Spark and Memcached)</td>
<td></td>
</tr>
<tr>
<td>Programming Models</td>
<td></td>
</tr>
<tr>
<td>(Sockets)</td>
<td></td>
</tr>
<tr>
<td>Communication and I/O Library</td>
<td></td>
</tr>
<tr>
<td>Point-to-Point Communication</td>
<td>Threaded Models and Synchronization</td>
</tr>
<tr>
<td>I/O and File Systems</td>
<td>QoS</td>
</tr>
<tr>
<td>Virtualization</td>
<td>Fault-Tolerance</td>
</tr>
<tr>
<td>Networking Technologies</td>
<td></td>
</tr>
<tr>
<td>(InfiniBand, 1/10/40/100 GigE and Intelligent NICs)</td>
<td>Commodity Computing System Architectures (Multi- and Many-core architectures and accelerators)</td>
</tr>
<tr>
<td>Commodity Computing System Architectures (Multi- and Many-core architectures and accelerators)</td>
<td>Storage Technologies (HDD, SSD, and NVMe-SSD)</td>
</tr>
</tbody>
</table>
The High-Performance Big Data (HiBD) Project

- RDMA for Apache Spark
- RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
 - Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions
- RDMA for Apache HBase
- RDMA for Memcached (RDMA-Memcached)
- RDMA for Apache Hadoop 1.x (RDMA-Hadoop)
- OSU HiBD-Benchmarks (OHB)
 - HDFS, Memcached, HBase, and Spark Micro-benchmarks
- http://hibd.cse.ohio-state.edu
- Users Base: 260 organizations from 31 countries
- More than 23,900 downloads from the project site

Available for InfiniBand and RoCE

Also run on Ethernet

Support for OpenPower

will be released tonight
Different Modes of RDMA for Apache Hadoop 2.x

- **HHH**: Heterogeneous storage devices with hybrid replication schemes are supported in this mode of operation to have better fault-tolerance as well as performance. This mode is enabled by default in the package.
- **HHH-M**: A high-performance in-memory based setup has been introduced in this package that can be utilized to perform all I/O operations in-memory and obtain as much performance benefit as possible.
- **HHH-L**: With parallel file systems integrated, HHH-L mode can take advantage of the Lustre available in the cluster.
- **HHH-L-BB**: This mode deploys a Memcached-based burst buffer system to reduce the bandwidth bottleneck of shared file system access. The burst buffer design is hosted by Memcached servers, each of which has a local SSD.
- **MapReduce over Lustre, with/without local disks**: Besides, HDFS based solutions, this package also provides support to run MapReduce jobs on top of Lustre alone. Here, two different modes are introduced: with local disks and without local disks.
- **Running with Slurm and PBS**: Supports deploying RDMA for Apache Hadoop 2.x with Slurm and PBS in different running modes (HHH, HHH-M, HHH-L, and MapReduce over Lustre).
HiBD Packages on SDSC Comet and Chameleon Cloud

• RDMA for Apache Hadoop 2.x and RDMA for Apache Spark are installed and available on SDSC Comet.
 – Examples for various modes of usage are available in:
 • RDMA for Apache Hadoop 2.x: /share/apps/examples/HADOOP
 • RDMA for Apache Spark: /share/apps/examples/SPARK/
 – Please email help@xsede.org (reference Comet as the machine, and SDSC as the site) if you have any further questions about usage and configuration.

• RDMA for Apache Hadoop is also available on Chameleon Cloud as an appliance
 – https://www.chameleoncloud.org/appliances/17/

M. Tatineni, X. Lu, D. J. Choi, A. Majumdar, and D. K. Panda, Experiences and Benefits of Running RDMA Hadoop and Spark on SDSC Comet, XSEDE’16, July 2016
Design Overview of HDFS with RDMA

- Enables high performance RDMA communication, while supporting traditional socket interface
- JNI Layer bridges Java based HDFS with communication library written in native code

Design Features
- RDMA-based HDFS write
- RDMA-based HDFS replication
- Parallel replication support
- On-demand connection setup
- InfiniBand/RoCE support

Enhanced HDFS with In-Memory and Heterogeneous Storage

- Design Features
 - Three modes
 - Default (HHH)
 - In-Memory (HHH-M)
 - Lustre-Integrated (HHH-L)
 - Policies to efficiently utilize the heterogeneous storage devices
 - RAM, SSD, HDD, Lustre
 - Eviction/Promotion based on data usage pattern
 - Hybrid Replication
 - Lustre-Integrated mode:
 - Lustre-based fault-tolerance

Performance Numbers of RDMA for Apache Hadoop 2.x – RandomWriter & TeraGen in OSU-RI2 (EDR)

Cluster with 8 Nodes with a total of 64 maps

- **RandomWriter**
 - 3x improvement over IPoIB for 80-160 GB file size

- **TeraGen**
 - 4x improvement over IPoIB for 80-240 GB file size
Performance Numbers of RDMA for Apache Hadoop 2.x – Sort & TeraSort in OSU-RI2 (EDR)

- **Sort**
 - 61% improvement over IPoIB for 80-160 GB data

- **TeraSort**
 - 18% improvement over IPoIB for 80-240 GB data
Design Overview of Spark with RDMA

• Design Features
 – RDMA based shuffle plugin
 – SEDA-based architecture
 – Dynamic connection management and sharing
 – Non-blocking data transfer
 – Off-JVM-heap buffer management
 – InfiniBand/RoCE support

• Enables high performance RDMA communication, while supporting traditional socket interface
• JNI Layer bridges Scala based Spark with communication library written in native code

Performance Evaluation on SDSC Comet – HiBench PageRank

- InfiniBand FDR, SSD, 32/64 Worker Nodes, 768/1536 Cores, (768/1536M 768/1536R)
- RDMA-based design for Spark 1.5.1
- RDMA vs. IPoIB with 768/1536 concurrent tasks, single SSD per node.
 - 32 nodes/768 cores: Total time reduced by 37% over IPoIB (56Gbps)
 - 64 nodes/1536 cores: Total time reduced by 43% over IPoIB (56Gbps)
Memcached Performance (FDR Interconnect)

- Memcached Get latency
 - 4 bytes OSU-IB: 2.84 us; IPoIB: 75.53 us, 2K bytes OSU-IB: 4.49 us; IPoIB: 123.42 us
- Memcached Throughput (4bytes)
 - 4080 clients OSU-IB: 556 Kops/sec, IPoIB: 233 Kops/s, Nearly 2X improvement in throughput

Experiments on TACC Stampede (Intel SandyBridge Cluster, IB: FDR)

Accelerating Indexing Techniques on HBase with RDMA

• Challenges
 – Operations on Distributed Ordered Table (DOT) with indexing techniques are network intensive
 – Additional overhead of creating and maintaining secondary indices
 – Can RDMA benefit indexing techniques (Apache Phoenix and CCIndex) on HBase?

• Results
 – Evaluation with Apache Phoenix and CCIndex
 – Up to 2x improvement in query throughput
 – Up to 35% reduction in application workload execution time

Collaboration with Institute of Computing Technology, Chinese Academy of Sciences

High-Performance Deep Learning over Big Data (DLoBD) Stacks

- **Challenges** of Deep Learning over Big Data (DLoBD)
 - Can RDMA-based designs in DLoBD stacks improve performance, scalability, and resource utilization on high-performance interconnects, GPUs, and multi-core CPUs?
 - What are the performance characteristics of representative DLoBD stacks on RDMA networks?
- **Characterization** on DLoBD Stacks
 - CaffeOnSpark, TensorFlowOnSpark, and BigDL
 - IPoIB vs. RDMA; In-band communication vs. Out-of-band communication; CPU vs. GPU; etc.
 - Performance, accuracy, scalability, and resource utilization
 - RDMA-based DLoBD stacks (e.g., BigDL over RDMA-Spark) can achieve 2.6x speedup compared to the IPoIB based scheme, while maintain similar accuracy

Virtualization-aware and Automatic Topology Detection Schemes in Hadoop on InfiniBand

• Challenges
 – Existing designs in Hadoop not virtualization-aware
 – No support for automatic topology detection

• Design
 – Automatic Topology Detection using MapReduce-based utility
 • Requires no user input
 • Can detect topology changes during runtime without affecting running jobs
 – Virtualization and topology-aware communication through map task scheduling and YARN container allocation policy extensions

Concluding Remarks

- Discussed challenges in accelerating Big Data middleware with HPC technologies
- Proposed solutions demonstrate convergence between HPC and BigData
- Will enable Big Data community to take advantage of modern HPC technologies to carry out their analytics in a fast and scalable manner
- Looking forward to collaboration with the community
Thank You!

{panda}@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/