
Performance of PGAS Models on KNL:
A Comprehensive Study with MVAPICH2-X

Dhabaleswar K (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

Intel Nerve Center (SC ’17) Presentation

Intel-Booth (SC ’17) 2Network Based Computing Laboratory

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory
Logical shared memory

Shared Memory Model

SHMEM, DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving
importance

Intel-Booth (SC ’17) 3Network Based Computing Laboratory

Partitioned Global Address Space (PGAS) Models
• Key features

- Simple shared memory abstractions

- Light weight one-sided communication

- Easier to express irregular communication

• Different approaches to PGAS
- Languages

• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel

- Libraries
• OpenSHMEM

• UPC++

• Global Arrays

Intel-Booth (SC ’17) 4Network Based Computing Laboratory

Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on
communication characteristics

• Benefits:

– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Cons

– Two different runtimes

– Need great care while programming

– Prone to deadlock if not careful

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

Intel-Booth (SC ’17) 5Network Based Computing Laboratory

MVAPICH2 Software Family
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++)
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler
integration

OEMT Utility to measure the energy consumption of MPI applications

Intel-Booth (SC ’17) 6Network Based Computing Laboratory

MVAPICH2-X for Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI
– Possible deadlock if both runtimes are not progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF
– Available with since 2012 (starting with MVAPICH2-X 1.9)
– http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu/overview/mvapich2x

Intel-Booth (SC ’17) 7Network Based Computing Laboratory

Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models,
International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation,
Int'l Conference on Parallel Processing (ICPP '12), September 2012

0
5

10
15
20
25
30
35

4K 8K 16K

Ti
m

e
(s

)

No. of Processes

MPI-Simple
MPI-CSC
MPI-CSR
Hybrid (MPI+OpenSHMEM)

13X

7.6X

• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design
• 8,192 processes

- 2.4X improvement over MPI-CSR
- 7.6X improvement over MPI-Simple

• 16,384 processes
- 1.5X improvement over MPI-CSR
- 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned
Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time

0
500

1000
1500
2000
2500
3000

500GB-512 1TB-1K 2TB-2K 4TB-4K

Ti
m

e
(s

ec
on

ds
)

Input Data - No. of Processes

MPI Hybrid

51%

• Performance of Hybrid (MPI+OpenSHMEM) Sort
Application

• 4,096 processes, 4 TB Input Size
- MPI – 2408 sec; 0.16 TB/min
- Hybrid – 1172 sec; 0.36 TB/min
- 51% improvement over MPI-design

Intel-Booth (SC ’17) 8Network Based Computing Laboratory

• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X

communication runtime

Performance of PGAS Models on KNL

Intel-Booth (SC ’17) 9Network Based Computing Laboratory

Performance of PGAS Models on KNL using MVAPICH2-X

0.01

0.1

1

10

100

1000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size

shmem_put

upc_putmem

upcxx_async_put

Intra-node PUT

0.01

0.1

1

10

100

1000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size

shmem_get

upc_getmem

upcxx_async_get

Intra-node GET

• Intra-node performance of one-sided Put/Get operations of PGAS
libraries/languages using MVAPICH2-X communication conduit

• Near-native communication performance is observed on KNL

Intel-Booth (SC ’17) 10Network Based Computing Laboratory

Performance of PGAS Models on KNL using MVAPICH2-X

0.1

1

10

100

1000

10000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size

shmem_put

upc_putmem

upcxx_async_put

Inter-node PUT

0.1

1

10

100

1000

10000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

La
te

nc
y

(u
s)

Message Size

shmem_get

upc_getmem

upcxx_async_get

Inter-node GET

• Inter-node performance of one-sided Put/Get operations using
MVAPICH2-X communication conduit with InfiniBand HCA (MT4115)

• Native IB performance for all three PGAS models is observed

Intel-Booth (SC ’17) 11Network Based Computing Laboratory

• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X

communication runtime

Performance of PGAS Models on KNL

Intel-Booth (SC ’17) 12Network Based Computing Laboratory

Microbenchmark Evaluations (Intra-node Put/Get)

0.01

0.1

1

10

100

1000

Ti
m

e
(u

s)

Message size (bytes)

KNL

Muti-threaded memcpy routines on KNL can further improve the performance of basic
Put/Get operations

Shmem_putmem Shmem_getmem

0.01

0.1

1

10

100

1000

Ti
m

e
(u

s)

Message size (bytes)

KNL

J. Hashmi, M. Li, H. Subramoni, D. Panda, Exploiting and Evaluating OpenSHMEM on KNL Architecture, Fourth Workshop on OpenSHMEM, Aug 2017

Intel-Booth (SC ’17) 13Network Based Computing Laboratory

Microbenchmark Evaluations (Inter-node Put/Get)

1

10

100

Ti
m

e
(u

s)

Message size (bytes)

• Inter-node one-sided Put and Get using 2 KNL nodes with 1 process per node
• KNL showed good scalability on inter-node one-sided Put and Get operations

Shmem_putmem Shmem_getmem

1

10

100

1000

Ti
m

e
(u

s)

Message size (bytes)

Intel-Booth (SC ’17) 14Network Based Computing Laboratory

1

10

100

1000

10000

Ti
m

e
(u

s)

Message size (bytes)

KNL

1

10

100

1000

10000

Ti
m

e
(u

s)

Message size (bytes)

KNL

Microbenchmark Evaluations (Collectives)

• Inter-node collectives runs using 2 KNL nodes with 64 processes per node
• Good scalability of collectives is observed on KNL using collective benchmarks
• Basic point-to-point performance difference is reflected in collectives as well

Shmem_reduce on 128 processes Shmem_broadcast on 128 processes

Intel-Booth (SC ’17) 15Network Based Computing Laboratory

Microbenchmark Evaluations (Atomics)

• Using multiple nodes of KNL, atomic operations showed about 2.5X
degradation on compare-swap, and Inc atomics

• Fetch-and-add (32-bit) showed up to 4X degradation on KNL

0

2

4

6

8

10

12

fadd32 fadd64 cswap32 cswap64 inc32 inc64

Ti
m

e
(u

s)

KNL

OpenSHMEM atomics on 128 processes

Available in
MVAPICH2-X 2.3b

Intel-Booth (SC ’17) 16Network Based Computing Laboratory

• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X

communication runtime

Performance of PGAS Models on KNL

Intel-Booth (SC ’17) 17Network Based Computing Laboratory

NAS Parallel Benchmark Evaluation
NAS-EP (RNG), CLASS=B

• AVX-512 vectorized and MCDRAM based execution of NAS kernels on KNL
• NAS-bT showed 30% improvement over default execution
• EP kernel didn’t show much improvement

0
10
20
30
40
50
60
70

16 36 64 100

Ti
m

e
(s

)

No. of processes

KNL (Default)

KNL (AVX-512)

KNL (AVX-512+MCDRAM)

NAS-BT (PDE solver), CLASS=B

0

4

8

12

16

20

16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default)

KNL (AVX-512)

KNL (AVX-512+MCDRAM)

Intel-Booth (SC ’17) 18Network Based Computing Laboratory

NAS Parallel Benchmark Evaluation (Cont’d)
NAS-MG (MultiGrid solver), CLASS=B

• Similar performance trends are observed on BT and MG kernels as well
• On SP kernel, MCDRAM based execution showed up to 20% improvement

over default at 16 processes

0

10

20

30

40

50

16 36 64 100

Ti
m

e
(s

)

No. of processes

KNL (Default)

KNL (AVX-512)

KNL (AVX-512+MCDRAM)

NAS-SP (non-linear PDE), CLASS=B

0

1

2

3

16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default)

KNL (AVX-512)

KNL (AVX-512+MCDRAM)

Intel-Booth (SC ’17) 19Network Based Computing Laboratory

Application Kernels Evaluation
Heat Image Kernel

• On heat diffusion based kernels AVX-512 vectorization showed better performance
• MCDRAM showed significant benefits on Heat-Image kernel for all process counts.

Combined with AVX-512 vectorization, it showed up to 4X improved performance

1

10

100

1000

16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default)

KNL (AVX-512)

KNL (AVX-512+MCDRAM)

Heat-2D Kernel using Jacobi method

0.1

1

10

100

16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default)
KNL (AVX-512)
KNL (AVX-512+MCDRAM)

Intel-Booth (SC ’17) 20Network Based Computing Laboratory

Application Kernels Evaluation (Cont’d)
DAXPY kernel

• Vectorization helps in matrix multiplication and vector operations
• Due to heavily compute bound nature of these kernels, MCDRAM didn’t show any

significant performance improvement

1

10

100

1000

16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default)
KNL (AVX-512)
KNL (AVX-512+MCDRAM)

Matrix Multiplication kernel

1

10

100

16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default)
KNL (AVX-512)
KNL (AVX-512+MCDRAM)

Intel-Booth (SC ’17) 21Network Based Computing Laboratory

Application Kernels Evaluation (Cont’d)

• Scalable Integer Sort kernel evaluation on KNL for different configuration
• Up to 3X improvement on un-optimized execution is observed on KNL

0.01

0.1

1

10

100

2 4 8 16 32 64 128

Ti
m

e
(s

)

No. of processes

KNL (Default) KNL (AVX-512)
KNL (AVX-512+MCDRAM)

Scalable Integer Sort Kernel (ISx)

Intel-Booth (SC ’17) 22Network Based Computing Laboratory

Application Kernels Performance on KNL

• A single node of KNL is evaluated under different application kernels using all
the available physical cores

0.01

0.1

1

10

100

2DHeat HeatImg MatMul DAXPY ISx(strong)

Ti
m

e
(s

)

KNL (68)

Application Kernels on a single KNL

Intel-Booth (SC ’17) 23Network Based Computing Laboratory

• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X

communication runtime

Performance of PGAS Models on KNL

Intel-Booth (SC ’17) 24Network Based Computing Laboratory

• Developed and Used two application kernels to evaluate UPC++
model using MVAPICH2-X as communication runtime

• Sparse Matrix Vector Multiplication (SpMV)

• Adaptive Mesh Refinement (AMR) kernel

– 2D-Heat conduction using Jacobi iterative solver

UPC++ Application Kernels Performance on KNL

Intel-Booth (SC ’17) 25Network Based Computing Laboratory

Application Kernels Performance of UPC++ on MVAPICH2-X

0

0.2

0.4

0.6

0.8

1

2 4 8 16 32 64 128

Ti
m

e
(s

)

No. of Processes

UPC++ SpMV

Strong-scaling Performance of SpMV kernel
(2Kx2K)

0

40

80

120

2 4 8 16 32 64 128

Ti
m

e
(s

)

No. of Processes

UPC++ 2D Heat

Strong-scaling Performance of 2D-Heat kernel (512x512)

• SpMV and 2D Heat kernels using MVAPICH2-X shows good scalability on
increasing number of processes of KNL

Intel-Booth (SC ’17) 26Network Based Computing Laboratory

Performance Results Summary
Put/Get and Atomics

Performance

Core-by-core
Application Performance

Collectives
Performance

KNL (Default)

KNL (AVX512)

KNL (AVX512
+ MCDRAM)

(Closer to center is better)

Node-by-node
Application

Performance

Intel-Booth (SC ’17) 27Network Based Computing Laboratory

Conclusion
• Comprehensive performance evaluation of MVAPICH2-X based OpenSHMEM,

UPC, and UPC++ models over the KNL architecture
• Observed significant performance gains on application kernels when using

AVX-512 vectorization
– 2.5x performance benefits in terms of execution time

• MCDRAM benefits are not prominent on most of the application kernels
– Lack of memory bound operations

• KNL showed good scalability on application kernels such as Heat-Image and Isx
• The runtime implementations need to take advantage of the concurrency of

KNL cores
• All proposed enhancements are available in the latest MVAPICH2-X 2.3b

release (http://mvapich.cse.ohio-state.edu)

Intel-Booth (SC ’17) 28Network Based Computing Laboratory

Funding Acknowledgments
Funding Support by

Equipment Support by

Intel-Booth (SC ’17) 29Network Based Computing Laboratory

Personnel Acknowledgments
Current Students

– A. Awan (Ph.D.)

– M. Bayatpour (Ph.D.)

– S. Chakraborthy (Ph.D.)

– C.-H. Chu (Ph.D.)

Past Students
– A. Augustine (M.S.)

– P. Balaji (Ph.D.)

– S. Bhagvat (M.S.)

– A. Bhat (M.S.)

– D. Buntinas (Ph.D.)

– L. Chai (Ph.D.)

– B. Chandrasekharan (M.S.)

– N. Dandapanthula (M.S.)

– V. Dhanraj (M.S.)

– T. Gangadharappa (M.S.)

– K. Gopalakrishnan (M.S.)

– R. Rajachandrasekar (Ph.D.)

– G. Santhanaraman (Ph.D.)

– A. Singh (Ph.D.)

– J. Sridhar (M.S.)

– S. Sur (Ph.D.)

– H. Subramoni (Ph.D.)

– K. Vaidyanathan (Ph.D.)

– A. Vishnu (Ph.D.)

– J. Wu (Ph.D.)

– W. Yu (Ph.D.)

Past Research Scientist
– K. Hamidouche

– S. Sur

Past Post-Docs
– D. Banerjee

– X. Besseron

– H.-W. Jin

– W. Huang (Ph.D.)

– W. Jiang (M.S.)

– J. Jose (Ph.D.)

– S. Kini (M.S.)

– M. Koop (Ph.D.)

– K. Kulkarni (M.S.)

– R. Kumar (M.S.)

– S. Krishnamoorthy (M.S.)

– K. Kandalla (Ph.D.)

– P. Lai (M.S.)

– J. Liu (Ph.D.)

– M. Luo (Ph.D.)

– A. Mamidala (Ph.D.)

– G. Marsh (M.S.)

– V. Meshram (M.S.)

– A. Moody (M.S.)

– S. Naravula (Ph.D.)

– R. Noronha (Ph.D.)

– X. Ouyang (Ph.D.)

– S. Pai (M.S.)

– S. Potluri (Ph.D.)

– S. Guganani (Ph.D.)

– J. Hashmi (Ph.D.)

– N. Islam (Ph.D.)

– M. Li (Ph.D.)

– J. Lin

– M. Luo

– E. Mancini

Current Research Scientists
– X. Lu

– H. Subramoni

Past Programmers
– D. Bureddy

– J. Perkins

Current Research Specialist
– J. Smith

– M. Arnold

– M. Rahman (Ph.D.)

– D. Shankar (Ph.D.)

– A. Venkatesh (Ph.D.)

– J. Zhang (Ph.D.)

– S. Marcarelli

– J. Vienne

– H. Wang

Current Post-doc
– A. Ruhela

Intel-Booth (SC ’17) 30Network Based Computing Laboratory

Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

http://nowlab.cse.ohio-state.edu/
mailto:panda@cse.ohio-state.edu

	Performance of PGAS Models on KNL: �A Comprehensive Study with MVAPICH2-X �
	Parallel Programming Models Overview
	Partitioned Global Address Space (PGAS) Models
	Hybrid (MPI+PGAS) Programming
	MVAPICH2 Software Family
	MVAPICH2-X for Hybrid MPI + PGAS Applications
	Application Level Performance with Graph500 and Sort
	Performance of PGAS Models on KNL
	Performance of PGAS Models on KNL using MVAPICH2-X
	Performance of PGAS Models on KNL using MVAPICH2-X
	Performance of PGAS Models on KNL
	Microbenchmark Evaluations (Intra-node Put/Get)
	Microbenchmark Evaluations (Inter-node Put/Get)
	Microbenchmark Evaluations (Collectives)
	Microbenchmark Evaluations (Atomics)
	Performance of PGAS Models on KNL
	NAS Parallel Benchmark Evaluation
	NAS Parallel Benchmark Evaluation (Cont’d)
	Application Kernels Evaluation
	Application Kernels Evaluation (Cont’d)
	Application Kernels Evaluation (Cont’d)
	Application Kernels Performance on KNL
	Performance of PGAS Models on KNL
	UPC++ Application Kernels Performance on KNL
	Application Kernels Performance of UPC++ on MVAPICH2-X
	Performance Results Summary�
	Conclusion
	Funding Acknowledgments
	Personnel Acknowledgments
	Thank You!

