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Parallel Programming Models Overview
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• Programming models provide abstract machine models

• Models can be mapped on different types of systems
– e.g. Distributed Shared Memory (DSM), MPI within a node, etc.

• PGAS models and Hybrid MPI+PGAS models are gradually receiving 
importance
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Partitioned Global Address Space (PGAS) Models
• Key features

- Simple shared memory abstractions 

- Light weight one-sided communication 

- Easier to express irregular communication

• Different approaches to PGAS
- Languages 

• Unified Parallel C (UPC)

• Co-Array Fortran (CAF)

• X10

• Chapel 

- Libraries
• OpenSHMEM

• UPC++

• Global Arrays
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Hybrid (MPI+PGAS) Programming

• Application sub-kernels can be re-written in MPI/PGAS based on 
communication characteristics

• Benefits:

– Best of Distributed Computing Model

– Best of Shared Memory Computing Model

• Cons

– Two different runtimes 

– Need great care while programming

– Prone to deadlock if not careful
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HPC Application

Kernel 2
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MVAPICH2 Software Family 
High-Performance Parallel Programming Libraries

MVAPICH2 Support for InfiniBand, Omni-Path, Ethernet/iWARP, and RoCE

MVAPICH2-X Advanced MPI features, OSU INAM, PGAS (OpenSHMEM, UPC, UPC++, and CAF), and 
MPI+PGAS programming models with unified communication runtime

MVAPICH2-GDR Optimized MPI for clusters with NVIDIA GPUs

MVAPICH2-Virt High-performance and scalable MPI for hypervisor and container based HPC cloud

MVAPICH2-EA Energy aware and High-performance MPI

MVAPICH2-MIC Optimized MPI for clusters with Intel KNC

Microbenchmarks

OMB Microbenchmarks suite to evaluate MPI and PGAS (OpenSHMEM, UPC, and UPC++) 
libraries for CPUs and GPUs

Tools

OSU INAM Network monitoring, profiling, and analysis for clusters with MPI and scheduler 
integration

OEMT Utility to measure the energy consumption of MPI applications
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MVAPICH2-X for Hybrid MPI + PGAS Applications

• Current Model – Separate Runtimes for OpenSHMEM/UPC/UPC++/CAF and MPI
– Possible deadlock if both runtimes are not  progressed

– Consumes more network resource

• Unified communication runtime for MPI, UPC, UPC++, OpenSHMEM, CAF
– Available with since 2012 (starting with MVAPICH2-X 1.9) 
– http://mvapich.cse.ohio-state.edu

http://mvapich.cse.ohio-state.edu/overview/mvapich2x
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Application Level Performance with Graph500 and Sort
Graph500 Execution Time

J. Jose, S. Potluri, K. Tomko and D. K. Panda, Designing Scalable Graph500 Benchmark with Hybrid MPI+OpenSHMEM Programming Models, 
International Supercomputing Conference (ISC’13), June 2013

J. Jose, K. Kandalla, M. Luo and D. K. Panda, Supporting Hybrid MPI and OpenSHMEM over InfiniBand: Design and Performance Evaluation, 
Int'l Conference on Parallel Processing (ICPP '12), September 2012
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• Performance of Hybrid (MPI+ OpenSHMEM) Graph500 Design
• 8,192 processes

- 2.4X improvement over MPI-CSR
- 7.6X improvement over MPI-Simple

• 16,384 processes
- 1.5X improvement over MPI-CSR
- 13X improvement over MPI-Simple

J. Jose, K. Kandalla, S. Potluri, J. Zhang and D. K. Panda, Optimizing Collective Communication in OpenSHMEM, Int'l Conference on Partitioned 
Global Address Space Programming Models (PGAS '13), October 2013.

Sort Execution Time
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• Performance of Hybrid (MPI+OpenSHMEM) Sort 
Application

• 4,096 processes, 4 TB Input Size
- MPI – 2408 sec; 0.16 TB/min
- Hybrid – 1172 sec; 0.36 TB/min
- 51% improvement over MPI-design
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• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM 

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X 

communication runtime

Performance of PGAS Models on KNL
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Performance of PGAS Models on KNL using MVAPICH2-X
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• Intra-node performance of one-sided Put/Get operations of PGAS 
libraries/languages using MVAPICH2-X communication conduit

• Near-native communication performance is observed on KNL
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Performance of PGAS Models on KNL using MVAPICH2-X
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• Inter-node performance of one-sided Put/Get operations using 
MVAPICH2-X communication conduit with InfiniBand HCA (MT4115)

• Native IB performance for all three PGAS models is observed
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• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM 

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X 

communication runtime

Performance of PGAS Models on KNL
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Microbenchmark Evaluations (Intra-node Put/Get)

0.01

0.1

1

10

100

1000

Ti
m

e 
(u

s)

Message size (bytes)

KNL

Muti-threaded memcpy routines on KNL can further improve the performance of basic 
Put/Get operations
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J. Hashmi, M. Li, H. Subramoni, D. Panda, Exploiting and Evaluating OpenSHMEM on KNL Architecture, Fourth Workshop on OpenSHMEM, Aug 2017
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Microbenchmark Evaluations (Inter-node Put/Get)
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• Inter-node one-sided Put and Get using 2 KNL nodes with 1 process per node
• KNL showed good scalability on inter-node one-sided Put and Get operations
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Microbenchmark Evaluations (Collectives)

• Inter-node collectives runs using 2 KNL nodes with 64 processes per node 
• Good scalability of collectives is observed on KNL using collective benchmarks
• Basic point-to-point performance difference is reflected in collectives as well

Shmem_reduce on 128 processes Shmem_broadcast on 128 processes
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Microbenchmark Evaluations (Atomics)

• Using multiple nodes of KNL, atomic operations showed about 2.5X 
degradation on compare-swap, and Inc atomics

• Fetch-and-add (32-bit) showed up to 4X degradation on KNL
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Available in 
MVAPICH2-X 2.3b
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• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM 

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X 

communication runtime

Performance of PGAS Models on KNL
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NAS Parallel Benchmark Evaluation
NAS-EP (RNG), CLASS=B

• AVX-512 vectorized and MCDRAM based execution of NAS kernels on KNL
• NAS-bT showed 30% improvement over default execution 
• EP kernel didn’t show much improvement
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NAS Parallel Benchmark Evaluation (Cont’d)
NAS-MG (MultiGrid solver), CLASS=B

• Similar performance trends are observed on BT and MG kernels as well
• On SP kernel, MCDRAM based execution showed up to 20% improvement 

over default at 16 processes
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Application Kernels Evaluation
Heat Image Kernel

• On heat diffusion based kernels AVX-512 vectorization showed better performance
• MCDRAM showed significant benefits on Heat-Image kernel for all process counts. 

Combined with AVX-512 vectorization, it showed up to 4X improved performance
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Application Kernels Evaluation (Cont’d)
DAXPY kernel

• Vectorization helps in matrix multiplication and vector operations
• Due to heavily compute bound nature of these kernels, MCDRAM didn’t show any 

significant performance improvement 
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Application Kernels Evaluation (Cont’d)

• Scalable Integer Sort kernel evaluation on KNL for different configuration
• Up to 3X improvement on un-optimized execution is observed on KNL

0.01

0.1

1

10

100

2 4 8 16 32 64 128

Ti
m

e 
(s

)

No. of processes

KNL (Default) KNL (AVX-512)
KNL (AVX-512+MCDRAM)

Scalable Integer Sort Kernel (ISx)



Intel-Booth (SC ’17) 22Network Based Computing Laboratory

Application Kernels Performance on KNL

• A single node of KNL is evaluated under different application kernels using all 
the available physical cores
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• Performance of Put and Get with OpenSHMEM, UPC, and UPC++
• Evaluation of KNL many-core processor for OpenSHMEM point-

to-point, collectives, and atomics Operations
• Impact of AVX-512 Vectorization and MCDRAM on OpenSHMEM 

Application Kernels
• Performance of UPC++ Application kernels on MVAPICH2-X 

communication runtime

Performance of PGAS Models on KNL
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• Developed and Used two application kernels to evaluate UPC++ 
model using MVAPICH2-X as communication runtime

• Sparse Matrix Vector Multiplication (SpMV) 

• Adaptive Mesh Refinement (AMR) kernel 

– 2D-Heat conduction using Jacobi iterative solver

UPC++ Application Kernels Performance on KNL
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Application Kernels Performance of UPC++ on MVAPICH2-X
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• SpMV and 2D Heat kernels using MVAPICH2-X shows good scalability on 
increasing number of processes of KNL
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Performance Results Summary
Put/Get and Atomics

Performance
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Conclusion
• Comprehensive performance evaluation of MVAPICH2-X based OpenSHMEM, 

UPC, and UPC++ models over the KNL architecture 
• Observed significant performance gains on application kernels when using 

AVX-512 vectorization
– 2.5x performance benefits in terms of execution time

• MCDRAM benefits are not prominent on most of the application kernels
– Lack of memory bound operations

• KNL showed good scalability on application kernels such as Heat-Image and Isx
• The runtime implementations need to take advantage of the concurrency of 

KNL cores
• All proposed enhancements are available in the latest MVAPICH2-X 2.3b 

release (http://mvapich.cse.ohio-state.edu)
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Thank You!

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

panda@cse.ohio-state.edu

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/
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