High-Performance Training for Deep Learning and Computer Vision HPC

Panel at CVPR-ECV ’18

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Scale-up and Scale-out

- **Scale-up**: Intra-node Communication
 - Many improvements like:
 - NVIDIA cuDNN, cuBLAS, NCCL, etc.
 - CUDA 9 Co-operative Groups

- **Scale-out**: Inter-node Communication
 - DL Frameworks – most are optimized for single-node only
 - Distributed (Parallel) Training is an emerging trend
 - OSU-Caffe – MPI-based
 - Microsoft CNTK – MPI/NCCL2
 - Google TensorFlow – gRPC-based/MPI/NCCL2
 - Facebook Caffe2 – Hybrid (NCCL2/Gloo/MPI)
Holistic Evaluation is Important!!

- My framework is faster than your framework!
- This needs to be understood in a holistic way.
- Performance depends on the entire execution environment (the full stack)
- Isolated view of performance is not helpful

Interdependency of HPC, Big Data and Deep Learning

HPC
(MPI, RDMA, Lustre, etc.)

Big Data
(Hadoop, Spark, HBase, Memcached, etc.)

Deep Learning
(Caffe, TensorFlow, BigDL, etc.)

Convergence of HPC, Big Data, and Deep Learning!!!
Drivers of Modern HPC Cluster and Data Center Architecture

- Multi-core/many-core technologies
- Remote Direct Memory Access (RDMA)-enabled networking (InfiniBand and RoCE)
 - Single Root I/O Virtualization (SR-IOV)
- Solid State Drives (SSDs), NVM, Parallel Filesystems, Object Storage Clusters
- Accelerators (NVIDIA GPGPUs and FPGAs)

- High Performance Interconnects – InfiniBand (with SR-IOV)
 <1usec latency, 200Gbps Bandwidth>
- Accelerators
 high compute density, high performance/watt
 >1 TFlop DP on a chip
- SSD, NVMe-SSD, NVRAM

SDSC Comet IACC Stampede2 Microsoft Azure Amazon EC2 Oracle Cloud Chameleon Cloud
1. What are the fundamental issues in designing DL frameworks?
 - Memory Requirements
 - Computation Requirements
 - Communication Overhead

2. Why do we need to support distributed training?
 - To overcome the limits of single-node training
 - To better utilize hundreds of existing HPC Clusters
Research Challenges to Exploit HPC Technologies (Cont’d)

3. What are the **new design challenges** brought forward by DL frameworks for Communication runtimes?
 - Large Message **Collective Communication** and Reductions
 - GPU Buffers (**CUDA-Awareness**)

4. Can a **Co-design** approach help in achieving Scale-up and Scale-out efficiently?
 - **Co-Design** the support at **Runtime level** and Exploit it at the **DL Framework level**
 - What performance benefits can be observed?
 - What needs to be fixed at the **communication runtime** layer?
Multiple Approaches taken up by OSU

- MPI-driven Deep Learning
- Co-designing Deep Learning Stacks with High-Performance MPI
- Accelerating TensorFlow on HPC Systems
- Accelerating Big Data Stacks
- Efficient Deep Learning over Big Data
Data Parallel Deep Learning and MPI Collectives

- Major **MPI Collectives** involved in Designing distributed frameworks
- **MPI_Bcast** – required for DNN parameter exchange
- **MPI_Reduce** – needed for gradient accumulation from multiple solvers
- **MPI_Allreduce** – use just one Allreduce instead of Reduce and Broadcast

Overview of the MVAPICH2 MPI Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.1), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,900 organizations in 86 countries
 - More than 474,000 (> 0.47 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (Nov ‘17 ranking)
 - 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 9th, 556,104 cores (Oakforest-PACS) in Japan
 - 12th, 368,928-core (Stampede2) at TACC
 - 17th, 241,108-core (Pleiades) at NASA
 - 48th, 76,032-core (Tsubame 2.5) at Tokyo Institute of Technology
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu
 - Empowering Top500 systems for over a decade
Optimized MVAPICH2-GDR Design

GPU-GPU Inter-node Latency

![Graph showing latency vs message size for different bandwidths.]

- **MV2-(NO-GDR)**
- **MV2-GDR-2.3a**

- **MLAPICH2-GDR-2.3a**

GPU-GPU Inter-node Bandwidth

![Graph showing bandwidth vs message size for different bandwidths.]

- **MV2-(NO-GDR)**
- **MV2-GDR-2.3a**

Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores

NVIDIA Volta V100 GPU

Mellanox Connect-X4 EDR HCA

CUDA 9.0

Mellanox OFED 4.0 with GPU-Direct-RDMA
Exploiting CUDA-Aware MPI for TensorFlow (Horovod)

- MVAPICH2-GDR offers excellent performance via advanced designs for MPI_Allreduce.
- Up to 22% better performance on Wilkes2 cluster (16 GPUs)
MVAPICH2-GDR: Allreduce Comparison with Baidu and OpenMPI

- 16 GPUs (4 nodes) MVAPICH2-GDR vs. Baidu-Allreduce and OpenMPI 3.0

Available with MVAPICH2-GDR 2.3a
MVAPICH2-GDR vs. NCCL2 – Reduce Operation

- Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases
- MPI_Reduce (MVAPICH2-GDR) vs. ncclReduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
MVAPICH2-GDR vs. NCCL2 – Allreduce Operation

- Optimized designs in MVAPICH2-GDR 2.3b* offer better/comparable performance for most cases
- MPI_Allreduce (MVAPICH2-GDR) vs. ncclAllreduce (NCCL2) on 16 GPUs

*Will be available with upcoming MVAPICH2-GDR 2.3b

Platform: Intel Xeon (Broadwell) nodes equipped with a dual-socket CPU, 1 K-80 GPUs, and EDR InfiniBand Inter-connect
OSU-Caffe: Proposed Co-Design Overview

• To address the limitations of Caffe and existing MPI runtimes, we propose the **OSU-Caffe (S-Caffe)** framework

• At the application (DL framework) level
 – Develop a fine-grain workflow – i.e. layer-wise communication instead of communicating the entire model

• At the runtime (MPI) level
 – Develop support to perform reduction of very-large GPU buffers
 – Perform reduction using GPU kernels

OSU-Caffe is available from the HiDL project page

http://hidl.cse.ohio-state.edu
S-Caffe vs. Inspur-Caffe and Microsoft CNTK

- AlexNet: Notoriously hard to scale-out on multiple nodes due to comm. overhead!
- Large number of parameters ~ 64 Million (comm. buffer size = 256 MB)

- GoogLeNet is a popular DNN
- 13 million parameters (comm. buffer size = ~50 MB)

S-Caffe delivers better or comparable performance with other multi-node capable DL frameworks

[Graph showing performance comparison]
Multiple Approaches taken up by OSU

- MPI-driven Deep Learning
- Co-designing Deep Learning Stacks with High-Performance MPI
- Accelerating TensorFlow on HPC Systems
- Accelerating Big Data Stacks
- Efficient Deep Learning over Big Data
Performance Benefits for AR-gRPC with Micro-Benchmark

Point-to-Point Latency

- **AR-gRPC (OSU design) Latency on SDSC-Comet-FDR**
 - Up to **2.7x** performance speedup over Default gRPC (IPoIB) for Latency for small messages.
 - Up to **2.8x** performance speedup over Default gRPC (IPoIB) for Latency for medium messages.
 - Up to **2.5x** performance speedup over Default gRPC (IPoIB) for Latency for large messages.

Performance Benefit for TensorFlow (Resnet50)

- **TensorFlow Resnet50** performance evaluation on an IB EDR cluster
 - Up to 26% performance speedup over Default gRPC (IPoIB) for 4 nodes
 - Up to 127% performance speedup over Default gRPC (IPoIB) for 8 nodes
 - Up to 133% performance speedup over Default gRPC (IPoIB) for 12 nodes
Performance Benefit for TensorFlow (Inception3)

- TensorFlow Inception3 performance evaluation on an IB EDR cluster
 - Up to 47% performance speedup over Default gRPC (IPoIB) for 4 nodes
 - Up to 116% performance speedup over Default gRPC (IPoIB) for 8 nodes
 - Up to 153% performance speedup over Default gRPC (IPoIB) for 12 nodes
Multiple Approaches taken up by OSU

- MPI-driven Deep Learning
- Co-designing Deep Learning Stacks with High-Performance MPI
- Accelerating TensorFlow on HPC Systems
- Accelerating Big Data Stacks
- Efficient Deep Learning over Big Data
The High-Performance Big Data (HiBD) Project

- RDMA for Apache Spark
- RDMA for Apache Hadoop 2.x (RDMA-Hadoop-2.x)
 - Plugins for Apache, Hortonworks (HDP) and Cloudera (CDH) Hadoop distributions
- RDMA for Apache HBase
- RDMA for Memcached (RDMA-Memcached)
- RDMA for Apache Hadoop 1.x (RDMA-Hadoop)
- OSU HiBD-Benchmarks (OHB)
 - HDFS, Memcached, HBase, and Spark Micro-benchmarks
- http://hibd.cse.ohio-state.edu
- Users Base: 285 organizations from 34 countries
- More than 26,700 downloads from the project site

Available for InfiniBand and RoCE
Also run on Ethernet
Available for x86 and OpenPOWER
Support for Singularity and Docker
High-Performance Deep Learning over Big Data (DLoBD) Stacks

- **Challenges of Deep Learning over Big Data (DLoBD)**
 - Can RDMA-based designs in DLoBD stacks improve performance, scalability, and resource utilization on high-performance interconnects, GPUs, and multi-core CPUs?
 - What are the performance characteristics of representative DLoBD stacks on RDMA networks?

- **Characterization on DLoBD Stacks**
 - CaffeOnSpark, TensorFlowOnSpark, and BigDL
 - IPoIB vs. RDMA; In-band communication vs. Out-of-band communication; CPU vs. GPU; etc.
 - Performance, accuracy, scalability, and resource utilization
 - RDMA-based DLoBD stacks (e.g., BigDL over RDMA-Spark) can achieve 2.6x speedup compared to the IPoIB based scheme, while maintain similar accuracy

Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Big Data Project
http://hibd.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/