High-Performance Broadcast for Streaming and Deep Learning

Ching-Hsiang Chu

chu.368@osu.edu

Department of Computer Science and Engineering
The Ohio State University
Outline

• Introduction

• Proposed Designs in MVAPICH2-GDR

• Performance Evaluation

• Concluding Remarks
Trends in Modern HPC Architecture

- Multi-core/many-core technologies
- High Performance Interconnects
- Accelerators/Coprocessors are becoming common in high-end systems
- High Performance Storage and Compute devices

Multi-core Processors

High Performance Interconnects – InfiniBand (IB), Omni-Path
< 1 μsec latency, 100 Gbps Bandwidth>

Accelerators / Coprocessors
high compute density, high performance/watt
> 1 Tflop/s DP on a chip

SSD, NVMe-SSD, NVRAM

Sunway TaihuLight
K - Computer
Tianhe – 2
Titan

Network Based Computing Laboratory
OSU Booth - SC17
Architectures for Deep Learning (DL)

Past and Current Trend
- Multi-core CPUs within a node
 - Multi-core CPUs across nodes
 - IB Networks

Near-future
- Multi-core CPUs + Multi-GPU within a node
 - Multi-core CPUs + Multi-GPU across nodes
 - IB Networks
 - E.g., NVIDIA DGX-1 systems

Network Based Computing Laboratory
OSU Booth - SC17
Streaming Applications

- Streaming applications on HPC systems
 1. Communication (MPI)
 - Broadcast-type operations
 2. Computation (CUDA)
 - Multiple GPU nodes as workers

Data Source

Real-time streaming

HPC resources for real-time analytics

Sender

Data streaming-like broadcast operations

Worker
 - CPU
 - GPU

Worker
 - CPU
 - GPU
High-performance Deep Learning

- Computation using GPU
- Communication using MPI
 - Exchanging partial gradients after each minibatch
 - All-to-all (Multi-Source) communications
 - E.g., MPI_Bcast
- Challenges
 - High computation-communication overlap
 - Good scalability for upcoming large-scale GPU clusters
 - No application-level modification
Outline

• Introduction
• Proposed Designs in MVAPICH2-GDR
• Performance Evaluation
• Concluding Remarks
Hardware Multicast-based Broadcast

- For GPU-resident data, using
 - GPUDirect RDMA (GDR)
 - InfiniBand Hardware Multicast (IB-MCAST)

- Overhead
 - IB UD limit
 - GDR limit

Hardware Multicast-based Broadcast (con’t)

• Heterogeneous Broadcast for streaming applications

➢ Free-up PCIe resources

Optimized Broadcast Send

• **Preparing Intermediate buffer** *(im_buf)*
 - Page-locked (pinned) host buffer
 - Fast Device-Host data movement
 - Allocated at initialization phase
 - Low overhead

• **Streaming data through host**
 - Fine-tuned chunked data
 - Asynchronous copy operations
 - Three-stage pipeline

Optimized Broadcast Receive

- Zero-copy broadcast receive
 - Pre-posted user buffer \((d_{in})\)
 - Avoids additional data movement
 - Leverages IB Scatter and GDR features
 - Low-latency
 - Free-up PCIe resources for applications

\(\text{MPI_Bcast}(d_{in},...)\)

Broadcast on Multi-GPU systems

- Proposed Intra-node Topology-Aware Broadcast
 - CUDA InterProcess Communication (IPC)

Multicast steps

cudaMemcpy (Device ↔ Device)

Efficient Reliability Support for IB-MCAST

- When a receiver experiences timeout (lost MCAST packet)
 - Performs the RMA Get operation to the sender’s backup buffer to retrieve lost MCAST packets
 - **Sender is not interrupted**

Outline

• Introduction
• Proposed Designs in MVAPICH2-GDR
• Performance Evaluation
• Concluding Remarks
Experimental Environments

- **Ohio State University (OSU) Micro-Benchmark (OMB)**

 http://mvapich.cse.ohio-state.edu/benchmarks/

 - osu_bcast - MPI_Bcast Latency Test
 - osu_bcast_streaming – MPI_Bcast streaming Test

- **Deep learning framework: CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK)**

 - AlexNet and VGG models with ImageNet dataset

Benchmark Evaluation

- @ RI2 cluster, 16 GPUs, 1 GPU/node

![Graph showing latency vs. message size](image)

- Provide near-constant latency over the system sizes
- Reduces up to 65% of latency for large messages

Lower is better

• **IB-MCAST + GDR + Topology-aware IPC-based schemes**

 – Up to **58%** and **79%** reduction for small and large messages

Deep Learning Frameworks

• @ RI2 cluster, 16 GPUs, 1 GPU/node:
 – CUDA-Aware Microsoft Cognitive Toolkit (CA-CNTK) without modification

<table>
<thead>
<tr>
<th>Training Time (s)</th>
<th>Number of GPU nodes</th>
<th>AlexNet model</th>
<th>VGG model</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>MV2-GDR-Knomial</td>
<td>MV2-GDR-Knomial</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>MV2-GDR-Ring</td>
<td>MV2-GDR-Ring</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MCAST-GDR-Opt</td>
<td>MCAST-GDR-Opt</td>
</tr>
</tbody>
</table>

- *Lower is better*

- Reduces up to 24% and 15% of latency for AlexNet and VGG models
- Higher improvement is expected for larger system sizes
Concluding Remarks

• High-performance broadcast schemes to leverage GDR and IB-MCAST features for streaming and deep learning applications
 – Optimized streaming design for large messages transfers

• High-performance reliability support for IB-MCAST

 ➢ These features are included in MVAPICH2-GDR 2.3a

 ➢ http://mvapich.cse.ohio-state.edu/

 ➢ http://mvapich.cse.ohio-state.edu/userguide/gdr/2.3a/
Thank You!

Ching-Hsiang Chu
chu.368@osu.edu

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

Thank You!

- Join us for more tech talks from MVAPICH2 team
 - http://mvapich.cse.ohio-state.edu/conference/677/talks/

The MVAPICH2 Project
http://mvapich.cse.ohio-state.edu/

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/
Evaluation Parameters

<table>
<thead>
<tr>
<th>Notation</th>
<th>Meaning</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(n)</td>
<td>Number of processes</td>
<td>N/A</td>
</tr>
<tr>
<td>(m)</td>
<td>Number of broadcast sources</td>
<td>N/A</td>
</tr>
<tr>
<td>(t_s)</td>
<td>Set up time for sending data</td>
<td>sec</td>
</tr>
<tr>
<td>(t_o(n))</td>
<td>Overhead for issuing an IB-MCAST packet</td>
<td>sec</td>
</tr>
<tr>
<td>(M)</td>
<td>Original message size</td>
<td>bytes</td>
</tr>
<tr>
<td>(C)</td>
<td>Size of a data chunk</td>
<td>bytes</td>
</tr>
<tr>
<td>(U)</td>
<td>Maximum Transmission Unit for IB-MCAST, provided by hardware manufacturer</td>
<td>bytes</td>
</tr>
<tr>
<td>(B_H)</td>
<td>Bandwidth of reading Host memory</td>
<td>bytes/sec</td>
</tr>
<tr>
<td>(B_G)</td>
<td>Bandwidth of reading GPU memory (NVIDIA GPUDirect RDMA)</td>
<td>bytes/sec</td>
</tr>
<tr>
<td>(B_{PCIe})</td>
<td>PCIe Bandwidth between Host and GPU memory</td>
<td>bytes/sec</td>
</tr>
</tbody>
</table>

Diagram

- **Message**
 - \(M \)
 - \(C \)
 - \(U \)

- **Bandwidth**
 - \(B_H \gg B_G \)
 - \(B_{PCIe} \)
 - \(B_G \)
Ring-based Broadcast

- **Direct**
 \[(n - 1) \times (t_s + \frac{M}{B_G})\]

- **Pipeline**
 \[\left[\frac{M}{C} + (n - 2)\right] \times (t_s + \frac{C}{B_G})\]

- **Staging**
 \[\frac{M}{B_{PCl_e}} + (n - 1) \times (t_s + \frac{M}{B_H})\]

Poor Scalability

Source
- CPU
- IB HCA
- GPU Data

Destination 1
- CPU
- IB HCA
- GPU Data

Destination 2
- IB HCA
- CPU
- Data
- GPU

Destination 3
- IB HCA
- CPU
- Data
- GPU
K-nomial-based Broadcast

- Direct
 \[[\log_k n] \times \left(t_s + \frac{M}{B_G} \right) \]

- Pipeline
 \[\left(\frac{M}{C} \times [\log_k n] \right) \times \left(t_s + \frac{C}{B_G} \right) \]

- Staging
 \[\frac{M}{B_{ PCIe}} + [\log_k n] \times \left(t_s + \frac{M}{B_H} \right) \]

Non-optimized Scalability
Overlap Opportunities

Timeline

Overlap within a node

Overlap Across Nodes

Broadcast from Node A

Broadcast from Node B

Broadcast from Node C

- : cudaMemcpyAsync
- : IB Hardware Multicast
- : cudaStreamSynchronize
- : GDR Write
MCAST-based Broadcast

• NVIDIA GPUDirect[1]
 – Remote direct memory access (RDMA) transfers between GPUs and other PCIe devices \(\Rightarrow\) GDR
 – and more...

• InfiniBand (IB) hardware multicast (IB MCAST)[2]
 – Enables efficient designs of broadcast operations
 • Host-based[3]
 • GPU-based[4]

Future Work

• Extend the design for other broadcast-based collective algorithms as well as non-blocking operations
 – Allreduce, Allgather, ..., and so on