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MOTIVATION

Resurgence of Deep Learning (DL)

* Availability of Large Datasets like ImageNet and massively-parallel
modern hardware like NVIDIA GPUs

* Emergence of DL frameworks (Caffe, TensorFlow, CNTK, etc.)

* Computability of Deep Neural Networks (DNNs)

 Single GPU/node is not enough!

* Scale-up and Scale-out training: an emerging research area

RESEARCH CHALLENGES

* Various Parallelization Strategies for DNNs

* Model Parallelism / Data Parallelism@
Alternative Implementation Styles

* Parameter-Server approach / Reduction-Tree approach @@ @
Distributed Address-Space Design Constraints @
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lel Data Reading Mechanisms @

enges for Communication Runtimes

* Very Large GPU-based Buffers @@ @

* Overlap of Computation and Communication @

PROPOSED FRAMEWORK

*MV2-GDR #MV2-GDR-NCCL
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NCCL-based Hierarchical Design for Large-message MPI Bcast

a unified communication runtime
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* Performance Benefits

p to 2X improvement for micro-benchmarks
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p to 38% improvement for VGG training with CNTK No. of GPUs

VGG Training with CNTK

@ A. A. Awan, K. Hamidouche, A. Venkatesh, and D. K. Panda. Efficient Large Message Broadcast using NCCL and CUDA-Aware MPI for Deep Learning, ACM EuroMPI ’16
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Pure MPI Design for DL-Aware MPI_Bcast

* MPI_Bcast: Design and Performance Tuning

* Performance Benefits
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Performance comparable or better than
NCCL-augmented approaches for large
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Up to 10X improvement for small/medium
message sizes with micro-benchmarks
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@ A. A. Awan, C-H. Chu, H. Subramoni, and D. K. Panda. Optimized Broadcast for Deep Learning Workloads on Dense-GPU InfiniBand Clusters: MPIl or NCCL?, arXiv 17 (https.//arxiv.orq/abs/1707.09414)
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SUMMARY OF CONTRIBUTIONS

Tackle the challenge of designing a scalable and distributed DL
framework

Efficient Intra-node and Inter-node training

Proven scale-out for GoogLeNet up to 160 GPUs
Support for Small (CIFAR10/MNIST) and Large Datasets (ImageNet)
Optimized Model Propagation and Gradient Aggregation

Various Design Alternatives to provide Optimal Performance for Small
and Large scale training
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Overlap

Layer-wise Overlapped Gradient
Aggregation in OSU-Caffe
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* OSU-Caffe: Scale-out to 160 GPUs for GooglLeNet

GoogLeNet Training: Strong Scaling  AlexNet Training: Weak Scaling
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