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MOTIVATION
• Resurgence	of	Deep	Learning	(DL)

• Availability	of	Large	Datasets	like	ImageNet	 and	massively-parallel	
modern	hardware	like	NVIDIA	GPUs

• Emergence	of	DL	frameworks (Caffe,	TensorFlow,	CNTK,	etc.)

• Computability	of	Deep	Neural	Networks	(DNNs)
• Single	GPU/node	is	not	enough!
• Scale-up	and	Scale-out	training:	an	emerging	research	area

• OSU-Caffe: Co-Design MVAPICH2-GDR and Caffe

• Provide	design	principles	to	overlap	DNN	training	
with	MPI	communication

• MPI_Reduce:	Efficient	GPU-based	designs	for	large-
message	reductions

• Delivers	better	or	comparable	performance	to	
production-grade	DL	frameworks

• Performance Benefits

• MPI_Reduce:	130X speedup	over	OpenMPI and	2.5X
improvement	over	MVAPICH2-GDR

• OSU-Caffe:	Better/comparable	performance	to	CNTK	
for	AlexNet training

• OSU-Caffe:	Scale-out	to	160	GPUs for	GoogLeNet

• Various	Parallelization	Strategies	for	DNNs	
• Model	Parallelism	/	Data	Parallelism

• Alternative	Implementation	Styles
• Parameter-Server	approach	/	Reduction-Tree	approach

• Distributed	Address-Space	Design	Constraints
• Parallel	Data	Reading	Mechanisms
• Challenges	for	Communication	Runtimes

• Very	Large	GPU-based	Buffers
• Overlap	of	Computation	and	Communication

• MPI_Bcast: Design and Performance Tuning 

for DL Workloads 

• Design	ring-based	algorithms	for	large	
messages

• Harness	a	multitude	of	algorithms	and	
techniques	for	best	performance	across	the	
full	range	of	message	size	and	process/GPU	
count

• Performance Benefits

• Performance	comparable	or	better	 than	
NCCL-augmented	approaches	for	large	
messages	

• Up	to	10X	improvement for	small/medium	
message	sizes	with	micro-benchmarks

• Up	to	7%	improvement for	VGG	training

• Tackle	the	challenge	of	designing	a	scalable and	distributed DL	
framework

• Efficient	Intra-node and	Inter-node training
• Proven	scale-out for	GoogLeNet up	to	160	GPUs

• Support	for	Small	(CIFAR10/MNIST)	and	Large	Datasets	(ImageNet)
• Optimized	Model	Propagation and	Gradient Aggregation
• Various	Design Alternatives to	provide	Optimal	Performance	for	Small

and	Large scale	training

RESEARCH CHALLENGES

PROPOSED SOLUTIONS AND PERFORMANCE EVALUATION

• MPI_Bcast: Design Broadcast for DL Workloads using 
NCCL 

• NCCL-augmented	hybrid	design	in	MVAPICH2-GDR	
for	intra-node	communication

• Tuned	inter-node	communication	using	various	
algorithms	like	K-nomial Tree,	Scatter-Allgather,	etc.

• Combine	performance	features	of	NCCL	and	MPI	in	
a	unified	communication	runtime

• Performance Benefits

• Up	to	2X	improvement for	micro-benchmarks
• Up	to	38%	improvement	for	VGG	training	with	CNTK

PROPOSED FRAMEWORK

SUMMARY OF CONTRIBUTIONS
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Pure MPI Design for DL-Aware MPI_Bcast

NCCL-based Hierarchical Design for Large-message MPI Bcast

Layer-wise Overlapped Gradient 
Aggregation in OSU-Caffe
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MPI Reduce Benchmark: 160 GPUs (10 nodes)

GoogLeNet Training: Strong Scaling AlexNet Training: Weak Scaling
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MPI Bcast Benchmark: 128 GPUs (8 nodes)
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MPI Bcast Benchmark: 64 GPUs (8 nodes)
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