MVAPICH2-GDR: Pushing the Frontier of HPC and Deep Learning

Talk at NVIDIA booth (SC 2017)

by

Dhabaleswar K. (DK) Panda
The Ohio State University
E-mail: panda@cse.ohio-state.edu
http://www.cse.ohio-state.edu/~panda
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Multi-stream Communication for IPC
 • CMA-based Intra-node Communication Support
 • Maximal overlap in MPI Datatype Processing
 • Initial support for GPUDirect Async feature
• Streaming Support with IB Multicast and GDR
• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
• Conclusions
Overview of the MVAPICH2 Project

- High Performance open-source MPI Library for InfiniBand, Omni-Path, Ethernet/iWARP, and RDMA over Converged Ethernet (RoCE)
 - MVAPICH (MPI-1), MVAPICH2 (MPI-2.2 and MPI-3.0), Started in 2001, First version available in 2002
 - MVAPICH2-X (MPI + PGAS), Available since 2011
 - Support for GPGPUs (MVAPICH2-GDR) and MIC (MVAPICH2-MIC), Available since 2014
 - Support for Virtualization (MVAPICH2-Virt), Available since 2015
 - Support for Energy-Awareness (MVAPICH2-EA), Available since 2015
 - Support for InfiniBand Network Analysis and Monitoring (OSU INAM) since 2015
 - Used by more than 2,825 organizations in 85 countries
 - More than 433,000 (> 0.4 million) downloads from the OSU site directly
 - Empowering many TOP500 clusters (June ‘17 ranking)
 - 1st, 10,649,600-core (Sunway TaihuLight) at National Supercomputing Center in Wuxi, China
 - 15th, 241,108-core (Pleides) at NASA
 - 20th, 462,462-core (Stampede) at TACC
 - 44th, 74,520-core (Tsubame 2.5) at Tokyo Institute of Technology
 - Available with software stacks of many vendors and Linux Distros (RedHat and SuSE)
 - http://mvapich.cse.ohio-state.edu
 - Empowering Top500 systems for over a decade
 - System-X from Virginia Tech (3rd in Nov 2003, 2,200 processors, 12.25 TFlops) ->
 - Sunway TaihuLight (1st in Jun’17, 10M cores, 100 PFlops)
MVAPICH2 Architecture

High Performance Parallel Programming Models

<table>
<thead>
<tr>
<th>Message Passing Interface (MPI)</th>
<th>PGAS (UPC, OpenSHMEM, CAF, UPC++)</th>
<th>Hybrid --- MPI + X (MPI + PGAS + OpenMP/Cilk)</th>
</tr>
</thead>
</table>

High Performance and Scalable Communication Runtime

<table>
<thead>
<tr>
<th>Diverse APIs and Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point-to-point Primitives</td>
</tr>
<tr>
<td>Collectives Algorithms</td>
</tr>
<tr>
<td>Job Startup</td>
</tr>
<tr>
<td>Energy-Awareness</td>
</tr>
<tr>
<td>Remote Memory Access</td>
</tr>
<tr>
<td>I/O and File Systems</td>
</tr>
<tr>
<td>Fault Tolerance</td>
</tr>
<tr>
<td>Virtualization</td>
</tr>
<tr>
<td>Active Messages</td>
</tr>
<tr>
<td>Introspection & Analysis</td>
</tr>
</tbody>
</table>

Support for Modern Networking Technology (InfiniBand, iWARP, RoCE, OmniPath)

<table>
<thead>
<tr>
<th>Transport Protocols</th>
<th>Modern Features</th>
<th>Transport Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC</td>
<td>UMR</td>
<td>Shared Memory</td>
</tr>
<tr>
<td>XRC</td>
<td>ODP*</td>
<td>CMA</td>
</tr>
<tr>
<td>UD</td>
<td>SR-IOV</td>
<td>IVSHMEM</td>
</tr>
<tr>
<td>DC</td>
<td>Multi Rail</td>
<td></td>
</tr>
</tbody>
</table>

Support for Modern Multi-/Many-core Architectures (Intel-Xeon, OpenPower, Xeon-Phi (MIC, KNL*), NVIDIA GPGPU)

<table>
<thead>
<tr>
<th>Modern Features</th>
<th>Transport Mechanisms</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCDRAM*</td>
<td>NVLink*</td>
</tr>
<tr>
<td>NVLink*</td>
<td>CAPI*</td>
</tr>
</tbody>
</table>

* Upcoming
MVAPICH2 Software Family

<table>
<thead>
<tr>
<th>High-Performance Parallel Programming Libraries</th>
</tr>
</thead>
<tbody>
<tr>
<td>MVAPICH2</td>
</tr>
<tr>
<td>MVAPICH2-X</td>
</tr>
<tr>
<td>MVAPICH2-GDR</td>
</tr>
<tr>
<td>MVAPICH2-Virt</td>
</tr>
<tr>
<td>MVAPICH2-EA</td>
</tr>
<tr>
<td>MVAPICH2-MIC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Microbenchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>OMB</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSU INAM</td>
</tr>
<tr>
<td>OEMT</td>
</tr>
</tbody>
</table>
MVAPICH2-GDR: Optimizing MPI Data Movement on GPU Clusters

• Connected as PCIe devices – Flexibility but complexity

1. Intra-GPU
2. Intra-Socket GPU-GPU
3. Inter-Socket GPU-GPU
4. Inter-Node GPU-GPU
5. Intra-Socket GPU-Host
6. Inter-Socket GPU-Host
7. Inter-Node GPU-Host

8. Inter-Node GPU-GPU with IB adapter on remote socket

• For each path different schemes: Shared_mem, IPC, GPUDirect RDMA, pipeline ...

• Critical for runtimes to optimize data movement while hiding the complexity
GPU-Aware (CUDA-Aware) MPI Library: MVAPICH2-GPU

- Standard MPI interfaces used for unified data movement
- Takes advantage of Unified Virtual Addressing (>= CUDA 4.0)
- Overlaps data movement from GPU with RDMA transfers

At Sender:

MPI_Send(s_devbuf, size, ...);

At Receiver:

MPI_Recv(r_devbuf, size, ...);

High Performance and High Productivity
CUDA-Aware MPI: MVAPICH2-GDR 1.8-2.3 Releases

- Support for MPI communication from NVIDIA GPU device memory
- High performance RDMA-based inter-node point-to-point communication (GPU-GPU, GPU-Host and Host-GPU)
- High performance intra-node point-to-point communication for multi-GPU adapters/node (GPU-GPU, GPU-Host and Host-GPU)
- Taking advantage of CUDA IPC (available since CUDA 4.1) in intra-node communication for multiple GPU adapters/node
- Optimized and tuned collectives for GPU device buffers
- MPI datatype support for point-to-point and collective communication from GPU device buffers
- Unified memory
Using MVAPICH2-GPUDirect Version

- MVAPICH2-2.3 with GDR support can be downloaded from
 https://mvapich.cse.ohio-state.edu/download/mvapich2gdr/
- System software requirements
 - Mellanox OFED 3.2 or later
 - NVIDIA Driver 367.48 or later
 - NVIDIA CUDA Toolkit 7.5/8.0/9.0 or later
 - Plugin for GPUDirect RDMA
 - Strongly recommended
 - GDRCOPY module from NVIDIA
 https://github.com/NVIDIA/gdrcopy
- Contact MVAPICH help list with any questions related to the package
 mvapich-help@cse.ohio-state.edu
MVAPICH2-GDR 2.3a

- Released on 11/09/2017
- Major Features and Enhancements
 - Based on MVAPICH2 2.2
 - Support for CUDA 9.0
 - Add support for Volta (V100) GPU
 - Support for OpenPOWER with NVLink
 - Efficient Multiple CUDA stream-based IPC communication for multi-GPU systems with and without NVLink
 - Enhanced performance of GPU-based point-to-point communication
 - Leverage Linux Cross Memory Attach (CMA) feature for enhanced host-based communication
 - Enhanced performance of MPI_Allreduce for GPU-resident data
 - InfiniBand Multicast (IB-MCAST) based designs for GPU-based broadcast and streaming applications
 - Basic support for IB-MCAST designs with GPUDirect RDMA
 - Advanced support for zero-copy IB-MCAST designs with GPUDirect RDMA
 - Advanced reliability support for IB-MCAST designs
 - Efficient broadcast designs for Deep Learning applications
 - Enhanced collective tuning on Xeon, OpenPOWER, and NVIDIA DGX-1 systems
Optimized MVAPICH2-GDR Design

- **GPU-GPU Inter-node Latency**
 - **MV2-(NO-GDR)**
 - **MV2-GDR-2.3a**
 - **1.88us**
 - **10x**

- **GPU-GPU Inter-node Bandwidth**
 - **MV2-(NO-GDR)**
 - **MV2-GDR-2.3a**
 - **9x**

Message Size (Bytes)

Latency (us)

Bandwidth (MB/s)

- **MVAPICH2-GDR-2.3a**
- Intel Haswell (E5-2687W @ 3.10 GHz) node - 20 cores
- NVIDIA Volta V100 GPU
- Mellanox Connect-X4 EDR HCA
- CUDA 9.0
- Mellanox OFED 4.0 with GPU-Direct-RDMA
Application-Level Evaluation (HOOMD-blue)

- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- HoomdBlue Version 1.0.5
 - GDRCOPY enabled: MV2_USE_CUDA=1 MV2_IBA_HCA=mlx5_0 MV2_IBA_EAGER_THRESHOLD=32768 MV2_VBUF_TOTAL_SIZE=32768 MV2_USE_GPUDIRECT_LOOPBACK_LIMIT=32768 MV2_USE_GPUDIRECT_GDRCOPY=1 MV2_USE_GPUDIRECT_GDRCOPY_LIMIT=16384
Application-Level Evaluation (Cosmo) and Weather Forecasting in Switzerland

Wilkes GPU Cluster

- Default
- Callback-based
- Event-based

CSCS GPU cluster

- Default
- Callback-based
- Event-based

- 2X improvement on 32 GPUs nodes
- 30% improvement on 96 GPU nodes (8 GPUs/node)

On-going collaboration with CSCS and MeteoSwiss (Switzerland) in co-designing MV2-GDR and Cosmo Application

Cosmo model: http://www2.cosmo-model.org/content/tasks/operational/meteoSwiss/
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Multi-stream Communication for IPC
 • CMA-based Intra-node Communication Support
 • Support for OpenPower and NVLink
 • Initial support for GPUDirect Async feature
• Streaming Support with IB Multicast and GDR
• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
• Conclusions
Multi-stream Communication using CUDA IPC on OpenPOWER and DGX-1

- Up to **16% higher** Device to Device (D2D) bandwidth on OpenPOWER + NVLink inter-connect
- Up to **30% higher** D2D bandwidth on DGX-1 with NVLink

Pt-to-pt (D-D) Bandwidth:
Benefits of Multi-stream CUDA IPC Design

Available with MVAPICH2-GDR-2.3a
CMA-based Intra-node Communication Support

- Up to 30% lower Host-to-Host (H2H) latency and 30% higher H2H Bandwidth

INTRA-NODE Pt-to-Pt (H2H) LATENCY

INTRA-NODE Pt-to-Pt (H2H) BANDWIDTH

MVAPICH2-GDR-2.3a

- Intel Broadwell (E5-2680 v4 @ 3240 GHz) node – 28 cores
- NVIDIA Tesla K-80 GPU, and Mellanox Connect-X4 EDR HCA
- CUDA 8.0, Mellanox OFED 4.0 with GPU-Direct-RDMA
MVAPICH2-GDR: Performance on OpenPOWER (NVLink + Pascal)

Intra-node Latency: 13.8 us (without GPUDirectRDMA)

Inter-node Latency: 23 us (without GPUDirectRDMA)

Available in MVAPICH2-GDR 2.3a

Platform: OpenPOWER (ppc64le) nodes equipped with a dual-socket CPU, 4 Pascal P100-SXM GPUs, and 4X-FDR InfiniBand Inter-connect
Control Flow Decoupling through GPUDirect Async

- CPU offloads the compute, communication and synchronization tasks to GPU
 - All operations asynchronous from CPU
 - Hide the overhead of kernel launch
- Needs stream-based extensions to MPI semantics
- Latency Oriented: Able to hide the kernel launch overhead - *25% improvement* at 256 Bytes
- Throughput Oriented: Asynchronously to offload queue the Communication and computation tasks - *14% improvement* at 1KB message size

- Intel Sandy Bridge, NVIDIA K20 and Mellanox FDR HCA
- Will be available in a public release soon

Diagram:
- GPU
- CPU
- HCA
- CUDA_Kernel_a<<<>>>(A..., stream1)
- MPI_Isend (A..., req1, stream1)
- MPI_Wait (req1, stream1) (non-blocking from CPU)
- CUDA_Kernel_b<<<>>>(B..., stream1)

Graph:
- Latency oriented: Kernel+Send and Recv+Kernel
- Overlap with host computation/communication

Graphs show performance improvements for Default MPI and Enhanced MPI+GDS with varying Message Sizes (bytes) and Overlap (%).
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Multi-stream Communication for IPC
 • CMA-based Intra-node Communication Support
 • Support for OpenPower and NVLink
 • Initial support for GPUDirect Async feature
• Streaming Support with IB Multicast and GDR
• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
• Conclusions
Streaming Applications

- Streaming applications on HPC systems
 1. Communication (MPI)
 - Broadcast-type operations
 2. Computation (CUDA)
 - Multiple GPU nodes as workers
Hardware Multicast-based Broadcast

- For GPU-resident data, using
 - GPUDirect RDMA (GDR)
 - InfiniBand Hardware Multicast (IB-MCAST)

- Overhead
 - IB UD limit
 - GDR limit

Optimized Broadcast Send

• Preparing Intermediate buffer (*im_buf*)
 – Page-locked (pinned) host buffer
 ➢ Fast Device-Host data movement
 – Allocated at initialization phase
 ➢ Low overhead

• Streaming data through host
 – Fine-tuned chunked data
 – Asynchronous copy operations
 ➢ Three-stage pipeline

Optimized Broadcast Receive

- Zero-copy broadcast receive
 - Pre-posted user buffer (d_{in})
 - Avoids additional data movement
 - Leverages IB Scatter and GDR features
 - Low-latency
 - Free-up PCIe resources for applications

Broadcast on Multi-GPU systems

- Proposed Intra-node Topology-Aware Broadcast
 - CUDA InterProcess Communication (IPC)

Available in MVAPICH2-GDR 2.3a

Streaming Benchmark @ CSCS (88 GPUs)

- IB-MCAST + GDR + Topology-aware IPC-based schemes
 - Up to 58% and 79% reduction for small and large messages

Application Evaluation: Deep Learning Frameworks

- @ RI2 cluster, 16 GPUs, 1 GPU/node
 - Microsoft Cognitive Toolkit (CNTK) [https://github.com/Microsoft/CNTK]

Reduces up to 24% and 15% of latency for AlexNet and VGG models

Higher improvement can be observed for larger system sizes

Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Multi-stream Communication for IPC
 • CMA-based Intra-node Communication Support
 • Support for OpenPower and NVLink
 • Initial support for GPUDirect Async feature
• Streaming Support with IB Multicast and GDR
• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
• Conclusions
Efficient Broadcast: MVAPICH2-GDR and NCCL

- NCCL 1.x had some limitations
 - Only worked for a single node; no scale-out on multiple nodes
 - Degradation across IOH (socket) for scale-up (within a node)
- We propose optimized MPI_Bcast design that exploits NCCL [1]
 - Communication of very large GPU buffers
 - Scale-out on large number of dense multi-GPU nodes
- Hierarchical Communication that efficiently exploits:
 - CUDA-Aware MPI_Bcast in MV2-GDR
 - NCCL Broadcast for intra-node transfers
- Can pure MPI-level designs be done that achieve similar or better performance than NCCL-based approach? [2]

OSU-Caffe 0.9: Scalable Deep Learning on GPU Clusters

- **Caffe**: A flexible and layered Deep Learning framework.

- **Benefits and Weaknesses**
 - Multi-GPU Training within a single node
 - Performance degradation for GPUs across different sockets
 - Limited Scale-out

- **OSU-Caffe: MPI-based Parallel Training**
 - Enable Scale-up (within a node) and Scale-out (across multi-GPU nodes)
 - Scale-out on 64 GPUs for training CIFAR-10 network on CIFAR-10 dataset
 - Scale-out on 128 GPUs for training GoogLeNet network on ImageNet dataset

OSU-Caffe 0.9 available from HiDL site
Large Message Allreduce: MVAPICH2-GDR vs. Baidu-allreduce

- Performance gains for MVAPICH2-GDR 2.3a* compared to Baidu-allreduce

8 GPUs (4 nodes log scale-allreduce vs MVAPICH2-GDR)

*Available with MVAPICH2-GDR 2.3a
Large Message Optimized Collectives for Deep Learning

- MVAPICH2-GDR provides optimized collectives for large message sizes
- Optimized Reduce, Allreduce, and Bcast
- Good scaling with large number of GPUs
- Available in MVAPICH2-GDR 2.2 and higher
Outline

• Overview of the MVAPICH2 Project
• MVAPICH2-GPU with GPUDirect-RDMA (GDR)
• What’s new with MVAPICH2-GDR
 • Multi-stream Communication for IPC
 • CMA-based Intra-node Communication Support
 • Support for OpenPower and NVLink
 • Initial support for GPUDirect Async feature
• Streaming Support with IB Multicast and GDR
• High-Performance Deep Learning (HiDL) with MVAPICH2-GDR
• Conclusions
Conclusions

- MVAPICH2 optimizes MPI communication on InfiniBand clusters with GPUs
- Provides optimized designs for point-to-point two-sided and one-sided communication, datatype processing and collective operations
- Takes advantage of CUDA features like IPC and GPUDirect RDMA families
- Allows flexible solutions for streaming applications with GPUs
- HiDL: Accelerating your Deep Learning framework on HPC systems
 - Tight interaction with MVAPICH2-GDR to boost the performance on GPU cluster
 - Scale-out to multi-GPU nodes
Thank You!

panda@cse.ohio-state.edu

Network-Based Computing Laboratory
http://nowlab.cse.ohio-state.edu/

The High-Performance MPI/PGAS Project
http://mvapich.cse.ohio-state.edu/

The High-Performance Deep Learning Project
http://hidl.cse.ohio-state.edu/