
MCR-DL: Mix-and-Match Communication Runtime for Deep Learning
Quentin G. Anthony, Ammar Awan, Jeff Rasley, Yuxiong He, Aamir Shafi, Mustafa Abduljabbar, Hari Subramoni and Dhabaleswar K. Panda

{anthony.301, shafi.16, abduljabbar.1, subramoni.1, panda.2}@osu.edu, {ammar.awan, jeff.rasley, yuxhe}@microsoft.com

DESIGN – MCR-DL

CONTRIBUTIONS

CHALLENGES

MCR-DL: A unified communication interface Synchronization in MCR-DL

We define a Mix-and-Match Communication Runtime for Deep 
Learning (MCR-DL)
• Unified interface for all communication calls based on PyTorch 

distributed module’s API
• Backend-aware communication synchronization to avoid deadlocks

• MPI_Wait() for MPI, CUDA events for NCCL/SCCL
• Easy to add communication features like compression, tensor 

fusion, and logging.

Performance of DL applications using proposed designs on the 
Lassen@LLNL (V100 GPUs) and ThetaGPU@ALCF (A100 GPUs) systems
• Baseline: Single communication library for all operations
• MCR-DL: Coarse library mixing (NCCL AllReduce, MVAPICH2-GDR AlltoAll)
• MCR-DL-T: “Tuned” library mixing using a static table mapping message sizes to 

communication backend (see below table for details)

MCR-DL supports creating tuning tables (see right) 
• Define table before DL applications are run
• Map messages to libraries based on message size
• One table per #GPUs and communication operation

• MCR-DL’s reduced Python logic for 
communication operations improves 
small-message overhead (see below)

• Deep Learning applications require significantly more communication 
than previous data-parallel applications

• Deep Learning workloads are no longer purely using AllReduce and 
Broadcast communication operations
• Tensor Parallelism: AllReduce/AllGather • Pipeline Parallelism: Point-to-Point
• Pipeline Parallelism: Send/Recv • ZeRO: AllGather/ReduceScatter
• Data Parallelism: AllReduce/Broadcast • MoE: AlltoAll

• Given that we need a mixture of communication operations, which 
communication library should we use?

• Best AlltoAll is MVAPICH2-GDR, and best iAllReduce is NCCL

How to use the best communication library for a given operation?
• How do we avoid deadlocks when mixing communication backends?
• Can we choose the best library dynamically based on the message size?
• How do we define a unified interface for all communication calls?

• Comprehensive profiling and evaluation of 
modern deep learning applications

• Introduce MCR-DL, a unified communication 
interface that supports mixing libraries so that 
the best library is used for a given 
communication operation

• Evaluate proposed designs compared to existing 
libraries using DeepSpeed Mixture-of-Experts 
(DS-MoE) on up to 256 V100 GPUs, and Deep 
Learning Recommendation Models (DLRM) on 
up to 32 A100 GPUs

PERFORMANCE - Applications

• MCR-DL reduces the proportion of time spent in 
tensor communication (see above)

PERFORMANCE – Secondary Results

• 1.45x throughput on 256 Lassen V100 GPUs using DS-MoE
• 1.33x throughput on 32 ThetaGPU A100 GPUs using DLRM

MCR-DL throughput for DS-MoE on V100s MCR-DL throughput for DLRM on A100s

Communication overhead reduction with MCR-DL at 256 Lassen 
V100 GPUs (DS-MoE) and 32 ThetaGPU A100 GPUs (DLRM)

Overhead of MCR-DL (Python) over OMB (C)

MOTIVATION

Profile of compute vs communication for each DL 
application

Profile of communication operation breakdown 
for each DL application

AlltoAll performance on OSU Micro-Benchmark iAllReduce performance on OSU Micro-Benchmark

Tuning table for AllGather on 16 GPUs

Poster ID: P61916 Topic / Category: AI Models & Deployment - Deep Learning Frameworks

Quentin Anthony: anthony.301@osu.edu Dhabaleswar K (DK) Panda: panda@cse.ohio-state.edu


